Shortcuts

Source code for mmpretrain.models.backbones.sparse_convnext

# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Optional, Sequence, Union

import torch
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmengine.model import ModuleList, Sequential

from mmpretrain.registry import MODELS
from ..utils import (SparseAvgPooling, SparseConv2d, SparseHelper,
                     SparseMaxPooling, build_norm_layer)
from .convnext import ConvNeXt, ConvNeXtBlock


class SparseConvNeXtBlock(ConvNeXtBlock):
    """Sparse ConvNeXt Block.

    Note:
        There are two equivalent implementations:
        1. DwConv -> SparseLayerNorm -> 1x1 Conv -> GELU -> 1x1 Conv;
           all outputs are in (N, C, H, W).
        2. DwConv -> SparseLayerNorm -> Permute to (N, H, W, C) -> Linear ->
           GELU -> Linear; Permute back
        As default, we use the second to align with the official repository.
        And it may be slightly faster.
    """

    def forward(self, x):

        def _inner_forward(x):
            shortcut = x
            x = self.depthwise_conv(x)

            if self.linear_pw_conv:
                x = x.permute(0, 2, 3, 1)  # (N, C, H, W) -> (N, H, W, C)
                x = self.norm(x, data_format='channel_last')
                x = self.pointwise_conv1(x)
                x = self.act(x)
                if self.grn is not None:
                    x = self.grn(x, data_format='channel_last')
                x = self.pointwise_conv2(x)
                x = x.permute(0, 3, 1, 2)  # (N, H, W, C) -> (N, C, H, W)
            else:
                x = self.norm(x, data_format='channel_first')
                x = self.pointwise_conv1(x)
                x = self.act(x)

                if self.grn is not None:
                    x = self.grn(x, data_format='channel_first')
                x = self.pointwise_conv2(x)

            if self.gamma is not None:
                x = x.mul(self.gamma.view(1, -1, 1, 1))

            x *= SparseHelper._get_active_map_or_index(
                H=x.shape[2], returning_active_map=True)

            x = shortcut + self.drop_path(x)
            return x

        if self.with_cp and x.requires_grad:
            x = cp.checkpoint(_inner_forward, x)
        else:
            x = _inner_forward(x)
        return x


[docs]@MODELS.register_module() class SparseConvNeXt(ConvNeXt): """ConvNeXt with sparse module conversion function. Modified from https://github.com/keyu-tian/SparK/blob/main/models/convnext.py and https://github.com/keyu-tian/SparK/blob/main/encoder.py To use ConvNeXt v2, please set ``use_grn=True`` and ``layer_scale_init_value=0.``. Args: arch (str | dict): The model's architecture. If string, it should be one of architecture in ``ConvNeXt.arch_settings``. And if dict, it should include the following two keys: - depths (list[int]): Number of blocks at each stage. - channels (list[int]): The number of channels at each stage. Defaults to 'tiny'. in_channels (int): Number of input image channels. Defaults to 3. stem_patch_size (int): The size of one patch in the stem layer. Defaults to 4. norm_cfg (dict): The config dict for norm layers. Defaults to ``dict(type='SparseLN2d', eps=1e-6)``. act_cfg (dict): The config dict for activation between pointwise convolution. Defaults to ``dict(type='GELU')``. linear_pw_conv (bool): Whether to use linear layer to do pointwise convolution. Defaults to True. use_grn (bool): Whether to add Global Response Normalization in the blocks. Defaults to False. drop_path_rate (float): Stochastic depth rate. Defaults to 0. layer_scale_init_value (float): Init value for Layer Scale. Defaults to 1e-6. out_indices (Sequence | int): Output from which stages. Defaults to -1, means the last stage. frozen_stages (int): Stages to be frozen (all param fixed). Defaults to 0, which means not freezing any parameters. gap_before_output (bool): Whether to globally average the feature map before the final norm layer. In the official repo, it's only used in classification task. Defaults to True. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False. init_cfg (dict, optional): Initialization config dict. """ # noqa: E501 def __init__(self, arch: str = 'small', in_channels: int = 3, stem_patch_size: int = 4, norm_cfg: dict = dict(type='SparseLN2d', eps=1e-6), act_cfg: dict = dict(type='GELU'), linear_pw_conv: bool = True, use_grn: bool = False, drop_path_rate: float = 0, layer_scale_init_value: float = 1e-6, out_indices: int = -1, frozen_stages: int = 0, gap_before_output: bool = True, with_cp: bool = False, init_cfg: Optional[Union[dict, List[dict]]] = [ dict( type='TruncNormal', layer=['Conv2d', 'Linear'], std=.02, bias=0.), dict( type='Constant', layer=['LayerNorm'], val=1., bias=0.), ]): super(ConvNeXt, self).__init__(init_cfg=init_cfg) if isinstance(arch, str): assert arch in self.arch_settings, \ f'Unavailable arch, please choose from ' \ f'({set(self.arch_settings)}) or pass a dict.' arch = self.arch_settings[arch] elif isinstance(arch, dict): assert 'depths' in arch and 'channels' in arch, \ f'The arch dict must have "depths" and "channels", ' \ f'but got {list(arch.keys())}.' self.depths = arch['depths'] self.channels = arch['channels'] assert (isinstance(self.depths, Sequence) and isinstance(self.channels, Sequence) and len(self.depths) == len(self.channels)), \ f'The "depths" ({self.depths}) and "channels" ({self.channels}) ' \ 'should be both sequence with the same length.' self.num_stages = len(self.depths) if isinstance(out_indices, int): out_indices = [out_indices] assert isinstance(out_indices, Sequence), \ f'"out_indices" must by a sequence or int, ' \ f'get {type(out_indices)} instead.' for i, index in enumerate(out_indices): if index < 0: out_indices[i] = 4 + index assert out_indices[i] >= 0, f'Invalid out_indices {index}' self.out_indices = out_indices self.frozen_stages = frozen_stages self.gap_before_output = gap_before_output # 4 downsample layers between stages, including the stem layer. self.downsample_layers = ModuleList() stem = nn.Sequential( nn.Conv2d( in_channels, self.channels[0], kernel_size=stem_patch_size, stride=stem_patch_size), build_norm_layer(norm_cfg, self.channels[0]), ) self.downsample_layers.append(stem) # stochastic depth decay rule dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths)) ] block_idx = 0 # 4 feature resolution stages, each consisting of multiple residual # blocks self.stages = nn.ModuleList() for i in range(self.num_stages): depth = self.depths[i] channels = self.channels[i] if i >= 1: downsample_layer = nn.Sequential( build_norm_layer(norm_cfg, self.channels[i - 1]), nn.Conv2d( self.channels[i - 1], channels, kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) stage = Sequential(*[ SparseConvNeXtBlock( in_channels=channels, drop_path_rate=dpr[block_idx + j], norm_cfg=norm_cfg, act_cfg=act_cfg, linear_pw_conv=linear_pw_conv, layer_scale_init_value=layer_scale_init_value, use_grn=use_grn, with_cp=with_cp) for j in range(depth) ]) block_idx += depth self.stages.append(stage) self.dense_model_to_sparse(m=self) def forward(self, x): outs = [] for i, stage in enumerate(self.stages): x = self.downsample_layers[i](x) x = stage(x) if i in self.out_indices: if self.gap_before_output: gap = x.mean([-2, -1], keepdim=True) outs.append(gap.flatten(1)) else: outs.append(x) return tuple(outs)
[docs] def dense_model_to_sparse(self, m: nn.Module) -> nn.Module: """Convert regular dense modules to sparse modules.""" output = m if isinstance(m, nn.Conv2d): m: nn.Conv2d bias = m.bias is not None output = SparseConv2d( m.in_channels, m.out_channels, kernel_size=m.kernel_size, stride=m.stride, padding=m.padding, dilation=m.dilation, groups=m.groups, bias=bias, padding_mode=m.padding_mode, ) output.weight.data.copy_(m.weight.data) if bias: output.bias.data.copy_(m.bias.data) elif isinstance(m, nn.MaxPool2d): m: nn.MaxPool2d output = SparseMaxPooling( m.kernel_size, stride=m.stride, padding=m.padding, dilation=m.dilation, return_indices=m.return_indices, ceil_mode=m.ceil_mode) elif isinstance(m, nn.AvgPool2d): m: nn.AvgPool2d output = SparseAvgPooling( m.kernel_size, m.stride, m.padding, ceil_mode=m.ceil_mode, count_include_pad=m.count_include_pad, divisor_override=m.divisor_override) # elif isinstance(m, (nn.BatchNorm2d, nn.SyncBatchNorm)): # m: nn.BatchNorm2d # output = (SparseSyncBatchNorm2d # if enable_sync_bn else SparseBatchNorm2d)( # m.weight.shape[0], # eps=m.eps, # momentum=m.momentum, # affine=m.affine, # track_running_stats=m.track_running_stats) # output.weight.data.copy_(m.weight.data) # output.bias.data.copy_(m.bias.data) # output.running_mean.data.copy_(m.running_mean.data) # output.running_var.data.copy_(m.running_var.data) # output.num_batches_tracked.data.copy_(m.num_batches_tracked.data) for name, child in m.named_children(): output.add_module(name, self.dense_model_to_sparse(child)) del m return output
Read the Docs v: latest
Versions
latest
stable
mmcls-1.x
mmcls-0.x
dev
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.