Note
You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.
All modules for which code is available
- mmcls.apis.inference
- mmcls.apis.test
- mmcls.apis.train
- mmcls.core.evaluation.eval_metrics
- mmcls.core.evaluation.mean_ap
- mmcls.core.evaluation.multilabel_eval_metrics
- mmcls.core.hook.class_num_check_hook
- mmcls.core.hook.lr_updater
- mmcls.core.hook.precise_bn_hook
- mmcls.core.hook.wandblogger_hook
- mmcls.core.optimizers.lamb
- mmcls.datasets.base_dataset
- mmcls.datasets.cifar
- mmcls.datasets.custom
- mmcls.datasets.dataset_wrappers
- mmcls.datasets.imagenet
- mmcls.datasets.imagenet21k
- mmcls.datasets.mnist
- mmcls.datasets.multi_label
- mmcls.datasets.pipelines.auto_augment
- mmcls.datasets.pipelines.formatting
- mmcls.datasets.pipelines.loading
- mmcls.datasets.pipelines.transforms
- mmcls.datasets.stanford_cars
- mmcls.datasets.voc
- mmcls.models.backbones.alexnet
- mmcls.models.backbones.conformer
- mmcls.models.backbones.convmixer
- mmcls.models.backbones.convnext
- mmcls.models.backbones.cspnet
- mmcls.models.backbones.deit
- mmcls.models.backbones.densenet
- mmcls.models.backbones.efficientformer
- mmcls.models.backbones.efficientnet
- mmcls.models.backbones.hornet
- mmcls.models.backbones.hrnet
- mmcls.models.backbones.lenet
- mmcls.models.backbones.mlp_mixer
- mmcls.models.backbones.mobilenet_v2
- mmcls.models.backbones.mobilenet_v3
- mmcls.models.backbones.poolformer
- mmcls.models.backbones.regnet
- mmcls.models.backbones.repmlp
- mmcls.models.backbones.repvgg
- mmcls.models.backbones.res2net
- mmcls.models.backbones.resnest
- mmcls.models.backbones.resnet
- mmcls.models.backbones.resnet_cifar
- mmcls.models.backbones.resnext
- mmcls.models.backbones.seresnet
- mmcls.models.backbones.seresnext
- mmcls.models.backbones.shufflenet_v1
- mmcls.models.backbones.shufflenet_v2
- mmcls.models.backbones.swin_transformer
- mmcls.models.backbones.t2t_vit
- mmcls.models.backbones.timm_backbone
- mmcls.models.backbones.tnt
- mmcls.models.backbones.twins
- mmcls.models.backbones.van
- mmcls.models.backbones.vgg
- mmcls.models.backbones.vision_transformer
- mmcls.models.builder
- mmcls.models.classifiers.base
- mmcls.models.classifiers.image
- mmcls.models.heads.cls_head
- mmcls.models.heads.conformer_head
- mmcls.models.heads.deit_head
- mmcls.models.heads.linear_head
- mmcls.models.heads.multi_label_head
- mmcls.models.heads.multi_label_linear_head
- mmcls.models.heads.stacked_head
- mmcls.models.heads.vision_transformer_head
- mmcls.models.losses.accuracy
- mmcls.models.losses.asymmetric_loss
- mmcls.models.losses.cross_entropy_loss
- mmcls.models.losses.focal_loss
- mmcls.models.losses.label_smooth_loss
- mmcls.models.losses.seesaw_loss
- mmcls.models.necks.gap
- mmcls.models.necks.gem
- mmcls.models.necks.hr_fuse
- mmcls.models.utils.attention
- mmcls.models.utils.augment.cutmix
- mmcls.models.utils.augment.mixup
- mmcls.models.utils.augment.resizemix
- mmcls.models.utils.channel_shuffle
- mmcls.models.utils.helpers
- mmcls.models.utils.inverted_residual
- mmcls.models.utils.make_divisible
- mmcls.models.utils.position_encoding
- mmcls.models.utils.se_layer
- mmcls.utils.collect_env
- mmcls.utils.logger
- mmcls.utils.setup_env