Shortcuts

备注

您正在阅读 MMClassification 0.x 版本的文档。MMClassification 0.x 会在 2022 年末被切换为次要分支。建议您升级到 MMClassification 1.0 版本,体验更多新特性和新功能。请查阅 MMClassification 1.0 的安装教程迁移教程以及更新日志

ShuffleNet V2

Shufflenet v2: Practical guidelines for efficient cnn architecture design

Abstract

Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity, i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

Results and models

ImageNet-1k

Model

Params(M)

Flops(G)

Top-1 (%)

Top-5 (%)

Config

Download

ShuffleNetV2 1.0x

2.28

0.149

69.55

88.92

config

model | log

Citation

@inproceedings{ma2018shufflenet,
  title={Shufflenet v2: Practical guidelines for efficient cnn architecture design},
  author={Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian},
  booktitle={Proceedings of the European conference on computer vision (ECCV)},
  pages={116--131},
  year={2018}
}
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.