Shortcuts

备注

您正在阅读 MMClassification 0.x 版本的文档。MMClassification 0.x 会在 2022 年末被切换为次要分支。建议您升级到 MMClassification 1.0 版本,体验更多新特性和新功能。请查阅 MMClassification 1.0 的安装教程迁移教程以及更新日志

ConvMixer

Patches Are All You Need?

Abstract

Although convolutional networks have been the dominant architecture for vision tasks for many years, recent experiments have shown that Transformer-based models, most notably the Vision Transformer (ViT), may exceed their performance in some settings. However, due to the quadratic runtime of the self-attention layers in Transformers, ViTs require the use of patch embeddings, which group together small regions of the image into single input features, in order to be applied to larger image sizes. This raises a question: Is the performance of ViTs due to the inherently-more-powerful Transformer architecture, or is it at least partly due to using patches as the input representation? In this paper, we present some evidence for the latter: specifically, we propose the ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on patches as input, separates the mixing of spatial and channel dimensions, and maintains equal size and resolution throughout the network. In contrast, however, the ConvMixer uses only standard convolutions to achieve the mixing steps. Despite its simplicity, we show that the ConvMixer outperforms the ViT, MLP-Mixer, and some of their variants for similar parameter counts and data set sizes, in addition to outperforming classical vision models such as the ResNet.

Results and models

ImageNet-1k

Model

Params(M)

Flops(G)

Top-1 (%)

Top-5 (%)

Config

Download

ConvMixer-768/32*

21.11

19.62

80.16

95.08

config

model

ConvMixer-1024/20*

24.38

5.55

76.94

93.36

config

model

ConvMixer-1536/20*

51.63

48.71

81.37

95.61

config

model

Models with * are converted from the official repo. The config files of these models are only for inference. We don’t ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

Citation

@misc{trockman2022patches,
      title={Patches Are All You Need?},
      author={Asher Trockman and J. Zico Kolter},
      year={2022},
      eprint={2201.09792},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.