备注
您正在阅读 MMClassification 0.x 版本的文档。MMClassification 0.x 会在 2022 年末被切换为次要分支。建议您升级到 MMClassification 1.0 版本,体验更多新特性和新功能。请查阅 MMClassification 1.0 的安装教程、迁移教程以及更新日志。
mmcls.models.Res2Net¶
- class mmcls.models.Res2Net(scales=4, base_width=26, style='pytorch', deep_stem=True, avg_down=True, init_cfg=None, **kwargs)[源代码]¶
Res2Net backbone.
A PyTorch implement of : Res2Net: A New Multi-scale Backbone Architecture
- 参数
depth (int) – Depth of Res2Net, choose from {50, 101, 152}.
scales (int) – Scales used in Res2Net. Defaults to 4.
base_width (int) – Basic width of each scale. Defaults to 26.
in_channels (int) – Number of input image channels. Defaults to 3.
num_stages (int) – Number of Res2Net stages. Defaults to 4.
strides (Sequence[int]) – Strides of the first block of each stage. Defaults to
(1, 2, 2, 2)
.dilations (Sequence[int]) – Dilation of each stage. Defaults to
(1, 1, 1, 1)
.out_indices (Sequence[int]) – Output from which stages. Defaults to
(3, )
.style (str) – “pytorch” or “caffe”. If set to “pytorch”, the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. Defaults to “pytorch”.
deep_stem (bool) – Replace 7x7 conv in input stem with 3 3x3 conv. Defaults to True.
avg_down (bool) – Use AvgPool instead of stride conv when downsampling in the bottle2neck. Defaults to True.
frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Defaults to -1.
norm_cfg (dict) – Dictionary to construct and config norm layer. Defaults to
dict(type='BN', requires_grad=True)
.norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False.
zero_init_residual (bool) – Whether to use zero init for last norm layer in resblocks to let them behave as identity. Defaults to True.
init_cfg (dict or list[dict], optional) – Initialization config dict. Defaults to None.
示例
>>> from mmcls.models import Res2Net >>> import torch >>> model = Res2Net(depth=50, ... scales=4, ... base_width=26, ... out_indices=(0, 1, 2, 3)) >>> model.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = model.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 256, 8, 8) (1, 512, 4, 4) (1, 1024, 2, 2) (1, 2048, 1, 1)