备注
您正在阅读 MMClassification 0.x 版本的文档。MMClassification 0.x 会在 2022 年末被切换为次要分支。建议您升级到 MMClassification 1.0 版本,体验更多新特性和新功能。请查阅 MMClassification 1.0 的安装教程、迁移教程以及更新日志。
mmcls.models.EfficientNet¶
- class mmcls.models.EfficientNet(arch='b0', drop_path_rate=0.0, out_indices=(6,), frozen_stages=0, conv_cfg={'type': 'Conv2dAdaptivePadding'}, norm_cfg={'eps': 0.001, 'type': 'BN'}, act_cfg={'type': 'Swish'}, norm_eval=False, with_cp=False, init_cfg=[{'type': 'Kaiming', 'layer': 'Conv2d'}, {'type': 'Constant', 'layer': ['_BatchNorm', 'GroupNorm'], 'val': 1}])[源代码]¶
EfficientNet backbone.
- 参数
arch (str) – Architecture of efficientnet. Defaults to b0.
out_indices (Sequence[int]) – Output from which stages. Defaults to (6, ).
frozen_stages (int) – Stages to be frozen (all param fixed). Defaults to 0, which means not freezing any parameters.
conv_cfg (dict) – Config dict for convolution layer. Defaults to None, which means using conv2d.
norm_cfg (dict) – Config dict for normalization layer. Defaults to dict(type=’BN’).
act_cfg (dict) – Config dict for activation layer. Defaults to dict(type=’Swish’).
norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Defaults to False.
with_cp (bool) – Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Defaults to False.