Shortcuts

mmcls.models.CSPResNeXt

class mmcls.models.CSPResNeXt(*args, **kwargs)[源代码]

CSP-ResNeXt backbone.

参数
  • depth (int) – Depth of CSP-ResNeXt. Default: 50.

  • out_indices (Sequence[int]) – Output from which stages. Default: (4, ).

  • frozen_stages (int) – Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1.

  • conv_cfg (dict) – Config dict for convolution layer. Default: None.

  • norm_cfg (dict) – Dictionary to construct and config norm layer. Default: dict(type=’BN’, requires_grad=True).

  • act_cfg (dict) – Config dict for activation layer. Default: dict(type=’LeakyReLU’, negative_slope=0.1).

  • norm_eval (bool) – Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only.

  • init_cfg (dict or list[dict], optional) – Initialization config dict. Default: None.

示例

>>> from mmcls.models import CSPResNeXt
>>> import torch
>>> model = CSPResNeXt(depth=50, out_indices=(0, 1, 2, 3))
>>> model.eval()
>>> inputs = torch.rand(1, 3, 224, 224)
>>> level_outputs = model(inputs)
>>> for level_out in level_outputs:
...     print(tuple(level_out.shape))
...
(1, 256, 56, 56)
(1, 512, 28, 28)
(1, 1024, 14, 14)
(1, 2048, 7, 7)
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.