Shortcuts

备注

您正在阅读 MMClassification 0.x 版本的文档。MMClassification 0.x 会在 2022 年末被切换为次要分支。建议您升级到 MMClassification 1.0 版本,体验更多新特性和新功能。请查阅 MMClassification 1.0 的安装教程迁移教程以及更新日志

mmcls.models.backbones.resnet 源代码

# Copyright (c) OpenMMLab. All rights reserved.

import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.cnn import (ConvModule, build_activation_layer, build_conv_layer,
                      build_norm_layer, constant_init)
from mmcv.cnn.bricks import DropPath
from mmcv.runner import BaseModule
from mmcv.utils.parrots_wrapper import _BatchNorm

from ..builder import BACKBONES
from .base_backbone import BaseBackbone

eps = 1.0e-5


class BasicBlock(BaseModule):
    """BasicBlock for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the output channels of conv1. This is a
            reserved argument in BasicBlock and should always be 1. Default: 1.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module, optional): downsample operation on identity
            branch. Default: None.
        style (str): `pytorch` or `caffe`. It is unused and reserved for
            unified API with Bottleneck.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=1,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 drop_path_rate=0.0,
                 act_cfg=dict(type='ReLU', inplace=True),
                 init_cfg=None):
        super(BasicBlock, self).__init__(init_cfg=init_cfg)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert self.expansion == 1
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, out_channels, postfix=2)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            3,
            padding=1,
            bias=False)
        self.add_module(self.norm2_name, norm2)

        self.relu = build_activation_layer(act_cfg)
        self.downsample = downsample
        self.drop_path = DropPath(drop_prob=drop_path_rate
                                  ) if drop_path_rate > eps else nn.Identity()

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out = self.drop_path(out)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


class Bottleneck(BaseModule):
    """Bottleneck block for ResNet.

    Args:
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int): The ratio of ``out_channels/mid_channels`` where
            ``mid_channels`` is the input/output channels of conv2. Default: 4.
        stride (int): stride of the block. Default: 1
        dilation (int): dilation of convolution. Default: 1
        downsample (nn.Module, optional): downsample operation on identity
            branch. Default: None.
        style (str): ``"pytorch"`` or ``"caffe"``. If set to "pytorch", the
            stride-two layer is the 3x3 conv layer, otherwise the stride-two
            layer is the first 1x1 conv layer. Default: "pytorch".
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 expansion=4,
                 stride=1,
                 dilation=1,
                 downsample=None,
                 style='pytorch',
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 act_cfg=dict(type='ReLU', inplace=True),
                 drop_path_rate=0.0,
                 init_cfg=None):
        super(Bottleneck, self).__init__(init_cfg=init_cfg)
        assert style in ['pytorch', 'caffe']

        self.in_channels = in_channels
        self.out_channels = out_channels
        self.expansion = expansion
        assert out_channels % expansion == 0
        self.mid_channels = out_channels // expansion
        self.stride = stride
        self.dilation = dilation
        self.style = style
        self.with_cp = with_cp
        self.conv_cfg = conv_cfg
        self.norm_cfg = norm_cfg

        if self.style == 'pytorch':
            self.conv1_stride = 1
            self.conv2_stride = stride
        else:
            self.conv1_stride = stride
            self.conv2_stride = 1

        self.norm1_name, norm1 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(
            norm_cfg, self.mid_channels, postfix=2)
        self.norm3_name, norm3 = build_norm_layer(
            norm_cfg, out_channels, postfix=3)

        self.conv1 = build_conv_layer(
            conv_cfg,
            in_channels,
            self.mid_channels,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
        self.add_module(self.norm1_name, norm1)
        self.conv2 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            self.mid_channels,
            kernel_size=3,
            stride=self.conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.add_module(self.norm2_name, norm2)
        self.conv3 = build_conv_layer(
            conv_cfg,
            self.mid_channels,
            out_channels,
            kernel_size=1,
            bias=False)
        self.add_module(self.norm3_name, norm3)

        self.relu = build_activation_layer(act_cfg)
        self.downsample = downsample
        self.drop_path = DropPath(drop_prob=drop_path_rate
                                  ) if drop_path_rate > eps else nn.Identity()

    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        return getattr(self, self.norm3_name)

    def forward(self, x):

        def _inner_forward(x):
            identity = x

            out = self.conv1(x)
            out = self.norm1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.norm2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.norm3(out)

            if self.downsample is not None:
                identity = self.downsample(x)

            out = self.drop_path(out)

            out += identity

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def get_expansion(block, expansion=None):
    """Get the expansion of a residual block.

    The block expansion will be obtained by the following order:

    1. If ``expansion`` is given, just return it.
    2. If ``block`` has the attribute ``expansion``, then return
       ``block.expansion``.
    3. Return the default value according the the block type:
       1 for ``BasicBlock`` and 4 for ``Bottleneck``.

    Args:
        block (class): The block class.
        expansion (int | None): The given expansion ratio.

    Returns:
        int: The expansion of the block.
    """
    if isinstance(expansion, int):
        assert expansion > 0
    elif expansion is None:
        if hasattr(block, 'expansion'):
            expansion = block.expansion
        elif issubclass(block, BasicBlock):
            expansion = 1
        elif issubclass(block, Bottleneck):
            expansion = 4
        else:
            raise TypeError(f'expansion is not specified for {block.__name__}')
    else:
        raise TypeError('expansion must be an integer or None')

    return expansion


class ResLayer(nn.Sequential):
    """ResLayer to build ResNet style backbone.

    Args:
        block (nn.Module): Residual block used to build ResLayer.
        num_blocks (int): Number of blocks.
        in_channels (int): Input channels of this block.
        out_channels (int): Output channels of this block.
        expansion (int, optional): The expansion for BasicBlock/Bottleneck.
            If not specified, it will firstly be obtained via
            ``block.expansion``. If the block has no attribute "expansion",
            the following default values will be used: 1 for BasicBlock and
            4 for Bottleneck. Default: None.
        stride (int): stride of the first block. Default: 1.
        avg_down (bool): Use AvgPool instead of stride conv when
            downsampling in the bottleneck. Default: False
        conv_cfg (dict, optional): dictionary to construct and config conv
            layer. Default: None
        norm_cfg (dict): dictionary to construct and config norm layer.
            Default: dict(type='BN')
    """

    def __init__(self,
                 block,
                 num_blocks,
                 in_channels,
                 out_channels,
                 expansion=None,
                 stride=1,
                 avg_down=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN'),
                 **kwargs):
        self.block = block
        self.expansion = get_expansion(block, expansion)

        downsample = None
        if stride != 1 or in_channels != out_channels:
            downsample = []
            conv_stride = stride
            if avg_down and stride != 1:
                conv_stride = 1
                downsample.append(
                    nn.AvgPool2d(
                        kernel_size=stride,
                        stride=stride,
                        ceil_mode=True,
                        count_include_pad=False))
            downsample.extend([
                build_conv_layer(
                    conv_cfg,
                    in_channels,
                    out_channels,
                    kernel_size=1,
                    stride=conv_stride,
                    bias=False),
                build_norm_layer(norm_cfg, out_channels)[1]
            ])
            downsample = nn.Sequential(*downsample)

        layers = []
        layers.append(
            block(
                in_channels=in_channels,
                out_channels=out_channels,
                expansion=self.expansion,
                stride=stride,
                downsample=downsample,
                conv_cfg=conv_cfg,
                norm_cfg=norm_cfg,
                **kwargs))
        in_channels = out_channels
        for i in range(1, num_blocks):
            layers.append(
                block(
                    in_channels=in_channels,
                    out_channels=out_channels,
                    expansion=self.expansion,
                    stride=1,
                    conv_cfg=conv_cfg,
                    norm_cfg=norm_cfg,
                    **kwargs))
        super(ResLayer, self).__init__(*layers)


[文档]@BACKBONES.register_module() class ResNet(BaseBackbone): """ResNet backbone. Please refer to the `paper <https://arxiv.org/abs/1512.03385>`__ for details. Args: depth (int): Network depth, from {18, 34, 50, 101, 152}. in_channels (int): Number of input image channels. Default: 3. stem_channels (int): Output channels of the stem layer. Default: 64. base_channels (int): Middle channels of the first stage. Default: 64. num_stages (int): Stages of the network. Default: 4. strides (Sequence[int]): Strides of the first block of each stage. Default: ``(1, 2, 2, 2)``. dilations (Sequence[int]): Dilation of each stage. Default: ``(1, 1, 1, 1)``. out_indices (Sequence[int]): Output from which stages. Default: ``(3, )``. style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two layer is the 3x3 conv layer, otherwise the stride-two layer is the first 1x1 conv layer. deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv. Default: False. avg_down (bool): Use AvgPool instead of stride conv when downsampling in the bottleneck. Default: False. frozen_stages (int): Stages to be frozen (stop grad and set eval mode). -1 means not freezing any parameters. Default: -1. conv_cfg (dict | None): The config dict for conv layers. Default: None. norm_cfg (dict): The config dict for norm layers. norm_eval (bool): Whether to set norm layers to eval mode, namely, freeze running stats (mean and var). Note: Effect on Batch Norm and its variants only. Default: False. with_cp (bool): Use checkpoint or not. Using checkpoint will save some memory while slowing down the training speed. Default: False. zero_init_residual (bool): Whether to use zero init for last norm layer in resblocks to let them behave as identity. Default: True. Example: >>> from mmcls.models import ResNet >>> import torch >>> self = ResNet(depth=18) >>> self.eval() >>> inputs = torch.rand(1, 3, 32, 32) >>> level_outputs = self.forward(inputs) >>> for level_out in level_outputs: ... print(tuple(level_out.shape)) (1, 64, 8, 8) (1, 128, 4, 4) (1, 256, 2, 2) (1, 512, 1, 1) """ arch_settings = { 18: (BasicBlock, (2, 2, 2, 2)), 34: (BasicBlock, (3, 4, 6, 3)), 50: (Bottleneck, (3, 4, 6, 3)), 101: (Bottleneck, (3, 4, 23, 3)), 152: (Bottleneck, (3, 8, 36, 3)) } def __init__(self, depth, in_channels=3, stem_channels=64, base_channels=64, expansion=None, num_stages=4, strides=(1, 2, 2, 2), dilations=(1, 1, 1, 1), out_indices=(3, ), style='pytorch', deep_stem=False, avg_down=False, frozen_stages=-1, conv_cfg=None, norm_cfg=dict(type='BN', requires_grad=True), norm_eval=False, with_cp=False, zero_init_residual=True, init_cfg=[ dict(type='Kaiming', layer=['Conv2d']), dict( type='Constant', val=1, layer=['_BatchNorm', 'GroupNorm']) ], drop_path_rate=0.0): super(ResNet, self).__init__(init_cfg) if depth not in self.arch_settings: raise KeyError(f'invalid depth {depth} for resnet') self.depth = depth self.stem_channels = stem_channels self.base_channels = base_channels self.num_stages = num_stages assert num_stages >= 1 and num_stages <= 4 self.strides = strides self.dilations = dilations assert len(strides) == len(dilations) == num_stages self.out_indices = out_indices assert max(out_indices) < num_stages self.style = style self.deep_stem = deep_stem self.avg_down = avg_down self.frozen_stages = frozen_stages self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.with_cp = with_cp self.norm_eval = norm_eval self.zero_init_residual = zero_init_residual self.block, stage_blocks = self.arch_settings[depth] self.stage_blocks = stage_blocks[:num_stages] self.expansion = get_expansion(self.block, expansion) self._make_stem_layer(in_channels, stem_channels) self.res_layers = [] _in_channels = stem_channels _out_channels = base_channels * self.expansion for i, num_blocks in enumerate(self.stage_blocks): stride = strides[i] dilation = dilations[i] res_layer = self.make_res_layer( block=self.block, num_blocks=num_blocks, in_channels=_in_channels, out_channels=_out_channels, expansion=self.expansion, stride=stride, dilation=dilation, style=self.style, avg_down=self.avg_down, with_cp=with_cp, conv_cfg=conv_cfg, norm_cfg=norm_cfg, drop_path_rate=drop_path_rate) _in_channels = _out_channels _out_channels *= 2 layer_name = f'layer{i + 1}' self.add_module(layer_name, res_layer) self.res_layers.append(layer_name) self._freeze_stages() self.feat_dim = res_layer[-1].out_channels def make_res_layer(self, **kwargs): return ResLayer(**kwargs) @property def norm1(self): return getattr(self, self.norm1_name) def _make_stem_layer(self, in_channels, stem_channels): if self.deep_stem: self.stem = nn.Sequential( ConvModule( in_channels, stem_channels // 2, kernel_size=3, stride=2, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=True), ConvModule( stem_channels // 2, stem_channels // 2, kernel_size=3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=True), ConvModule( stem_channels // 2, stem_channels, kernel_size=3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, inplace=True)) else: self.conv1 = build_conv_layer( self.conv_cfg, in_channels, stem_channels, kernel_size=7, stride=2, padding=3, bias=False) self.norm1_name, norm1 = build_norm_layer( self.norm_cfg, stem_channels, postfix=1) self.add_module(self.norm1_name, norm1) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) def _freeze_stages(self): if self.frozen_stages >= 0: if self.deep_stem: self.stem.eval() for param in self.stem.parameters(): param.requires_grad = False else: self.norm1.eval() for m in [self.conv1, self.norm1]: for param in m.parameters(): param.requires_grad = False for i in range(1, self.frozen_stages + 1): m = getattr(self, f'layer{i}') m.eval() for param in m.parameters(): param.requires_grad = False def init_weights(self): super(ResNet, self).init_weights() if (isinstance(self.init_cfg, dict) and self.init_cfg['type'] == 'Pretrained'): # Suppress zero_init_residual if use pretrained model. return if self.zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): constant_init(m.norm3, 0) elif isinstance(m, BasicBlock): constant_init(m.norm2, 0) def forward(self, x): if self.deep_stem: x = self.stem(x) else: x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.maxpool(x) outs = [] for i, layer_name in enumerate(self.res_layers): res_layer = getattr(self, layer_name) x = res_layer(x) if i in self.out_indices: outs.append(x) return tuple(outs) def train(self, mode=True): super(ResNet, self).train(mode) self._freeze_stages() if mode and self.norm_eval: for m in self.modules(): # trick: eval have effect on BatchNorm only if isinstance(m, _BatchNorm): m.eval()
[文档]@BACKBONES.register_module() class ResNetV1c(ResNet): """ResNetV1c backbone. This variant is described in `Bag of Tricks. <https://arxiv.org/pdf/1812.01187.pdf>`_. Compared with default ResNet(ResNetV1b), ResNetV1c replaces the 7x7 conv in the input stem with three 3x3 convs. """ def __init__(self, **kwargs): super(ResNetV1c, self).__init__( deep_stem=True, avg_down=False, **kwargs)
[文档]@BACKBONES.register_module() class ResNetV1d(ResNet): """ResNetV1d backbone. This variant is described in `Bag of Tricks. <https://arxiv.org/pdf/1812.01187.pdf>`_. Compared with default ResNet(ResNetV1b), ResNetV1d replaces the 7x7 conv in the input stem with three 3x3 convs. And in the downsampling block, a 2x2 avg_pool with stride 2 is added before conv, whose stride is changed to 1. """ def __init__(self, **kwargs): super(ResNetV1d, self).__init__( deep_stem=True, avg_down=True, **kwargs)
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
pdf
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.