Note
You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.
mmcls.models.utils¶
This package includes some helper functions and common components used in various networks.
mmcls.models.utils
Common Components¶
Inverted Residual Block. |
|
Squeeze-and-Excitation Module. |
|
Shift Window Multihead Self-Attention Module. |
|
Multi-head Attention Module. |
|
The Conditional Position Encoding (CPE) module. |
Helper Functions¶
channel_shuffle¶
- mmcls.models.utils.channel_shuffle(x, groups)[source]¶
Channel Shuffle operation.
This function enables cross-group information flow for multiple groups convolution layers.
- Parameters
x (Tensor) – The input tensor.
groups (int) – The number of groups to divide the input tensor in the channel dimension.
- Returns
The output tensor after channel shuffle operation.
- Return type
Tensor
make_divisible¶
- mmcls.models.utils.make_divisible(value, divisor, min_value=None, min_ratio=0.9)[source]¶
Make divisible function.
This function rounds the channel number down to the nearest value that can be divisible by the divisor.
- Parameters
value (int) – The original channel number.
divisor (int) – The divisor to fully divide the channel number.
min_value (int, optional) – The minimum value of the output channel. Default: None, means that the minimum value equal to the divisor.
min_ratio (float) – The minimum ratio of the rounded channel number to the original channel number. Default: 0.9.
- Returns
The modified output channel number
- Return type
to_ntuple¶
- mmcls.models.utils.to_ntuple(n)¶
A to_tuple function generator.
It returns a function, this function will repeat the input to a tuple of length
n
if the input is not an Iterable object, otherwise, return the input directly.- Parameters
n (int) – The number of the target length.
- mmcls.models.utils.to_2tuple(x)¶
- mmcls.models.utils.to_3tuple(x)¶
- mmcls.models.utils.to_4tuple(x)¶