Note
You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.
Source code for mmcls.models.backbones.seresnet
# Copyright (c) OpenMMLab. All rights reserved.
import torch.utils.checkpoint as cp
from ..builder import BACKBONES
from ..utils.se_layer import SELayer
from .resnet import Bottleneck, ResLayer, ResNet
class SEBottleneck(Bottleneck):
"""SEBottleneck block for SEResNet.
Args:
in_channels (int): The input channels of the SEBottleneck block.
out_channels (int): The output channel of the SEBottleneck block.
se_ratio (int): Squeeze ratio in SELayer. Default: 16
"""
def __init__(self, in_channels, out_channels, se_ratio=16, **kwargs):
super(SEBottleneck, self).__init__(in_channels, out_channels, **kwargs)
self.se_layer = SELayer(out_channels, ratio=se_ratio)
def forward(self, x):
def _inner_forward(x):
identity = x
out = self.conv1(x)
out = self.norm1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.norm2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.norm3(out)
out = self.se_layer(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
return out
if self.with_cp and x.requires_grad:
out = cp.checkpoint(_inner_forward, x)
else:
out = _inner_forward(x)
out = self.relu(out)
return out
[docs]@BACKBONES.register_module()
class SEResNet(ResNet):
"""SEResNet backbone.
Please refer to the `paper <https://arxiv.org/abs/1709.01507>`__ for
details.
Args:
depth (int): Network depth, from {50, 101, 152}.
se_ratio (int): Squeeze ratio in SELayer. Default: 16.
in_channels (int): Number of input image channels. Default: 3.
stem_channels (int): Output channels of the stem layer. Default: 64.
num_stages (int): Stages of the network. Default: 4.
strides (Sequence[int]): Strides of the first block of each stage.
Default: ``(1, 2, 2, 2)``.
dilations (Sequence[int]): Dilation of each stage.
Default: ``(1, 1, 1, 1)``.
out_indices (Sequence[int]): Output from which stages. If only one
stage is specified, a single tensor (feature map) is returned,
otherwise multiple stages are specified, a tuple of tensors will
be returned. Default: ``(3, )``.
style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
layer is the 3x3 conv layer, otherwise the stride-two layer is
the first 1x1 conv layer.
deep_stem (bool): Replace 7x7 conv in input stem with 3 3x3 conv.
Default: False.
avg_down (bool): Use AvgPool instead of stride conv when
downsampling in the bottleneck. Default: False.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
conv_cfg (dict | None): The config dict for conv layers. Default: None.
norm_cfg (dict): The config dict for norm layers.
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only. Default: False.
with_cp (bool): Use checkpoint or not. Using checkpoint will save some
memory while slowing down the training speed. Default: False.
zero_init_residual (bool): Whether to use zero init for last norm layer
in resblocks to let them behave as identity. Default: True.
Example:
>>> from mmcls.models import SEResNet
>>> import torch
>>> self = SEResNet(depth=50)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 224, 224)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
(1, 64, 56, 56)
(1, 128, 28, 28)
(1, 256, 14, 14)
(1, 512, 7, 7)
"""
arch_settings = {
50: (SEBottleneck, (3, 4, 6, 3)),
101: (SEBottleneck, (3, 4, 23, 3)),
152: (SEBottleneck, (3, 8, 36, 3))
}
def __init__(self, depth, se_ratio=16, **kwargs):
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for SEResNet')
self.se_ratio = se_ratio
super(SEResNet, self).__init__(depth, **kwargs)
def make_res_layer(self, **kwargs):
return ResLayer(se_ratio=self.se_ratio, **kwargs)