Shortcuts

Note

You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.

Swin Transformer

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Abstract

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose backbone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical architecture has the flexibility to model at various scales and has linear computational complexity with respect to image size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design and the shifted window approach also prove beneficial for all-MLP architectures.

Results and models

ImageNet-21k

The pre-trained models on ImageNet-21k are used to fine-tune, and therefore don’t have evaluation results.

Model

resolution

Params(M)

Flops(G)

Download

Swin-B

224x224

86.74

15.14

model

Swin-B

384x384

86.88

44.49

model

Swin-L

224x224

195.00

34.04

model

Swin-L

384x384

195.20

100.04

model

ImageNet-1k

Model

Pretrain

resolution

Params(M)

Flops(G)

Top-1 (%)

Top-5 (%)

Config

Download

Swin-T

From scratch

224x224

28.29

4.36

81.18

95.61

config

model | log

Swin-S

From scratch

224x224

49.61

8.52

83.02

96.29

config

model | log

Swin-B

From scratch

224x224

87.77

15.14

83.36

96.44

config

model | log

Swin-S*

From scratch

224x224

49.61

8.52

83.21

96.25

config

model

Swin-B*

From scratch

224x224

87.77

15.14

83.42

96.44

config

model

Swin-B*

From scratch

384x384

87.90

44.49

84.49

96.95

config

model

Swin-B*

ImageNet-21k

224x224

87.77

15.14

85.16

97.50

config

model

Swin-B*

ImageNet-21k

384x384

87.90

44.49

86.44

98.05

config

model

Swin-L*

ImageNet-21k

224x224

196.53

34.04

86.24

97.88

config

model

Swin-L*

ImageNet-21k

384x384

196.74

100.04

87.25

98.25

config

model

Models with * are converted from the official repo. The config files of these models are only for validation. We don’t ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

CUB-200-2011

Model

Pretrain

resolution

Params(M)

Flops(G)

Top-1 (%)

Config

Download

Swin-L

ImageNet-21k

384x384

195.51

100.04

91.87

config

model | log

Citation

@article{liu2021Swin,
  title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
  author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
  journal={arXiv preprint arXiv:2103.14030},
  year={2021}
}
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.