Shortcuts

Note

You are reading the documentation for MMClassification 0.x, which will soon be deprecated at the end of 2022. We recommend you upgrade to MMClassification 1.0 to enjoy fruitful new features and better performance brought by OpenMMLab 2.0. Check the installation tutorial, migration tutorial and changelog for more details.

ResNeXt

Aggregated Residual Transformations for Deep Neural Networks

Abstract

We present a simple, highly modularized network architecture for image classification. Our network is constructed by repeating a building block that aggregates a set of transformations with the same topology. Our simple design results in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condition of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt, are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet counterpart. The code and models are publicly available online.

Results and models

ImageNet-1k

Model

Params(M)

Flops(G)

Top-1 (%)

Top-5 (%)

Config

Download

ResNeXt-32x4d-50

25.03

4.27

77.90

93.66

config

model | log

ResNeXt-32x4d-101

44.18

8.03

78.61

94.17

config

model | log

ResNeXt-32x8d-101

88.79

16.5

79.27

94.58

config

model | log

ResNeXt-32x4d-152

59.95

11.8

78.88

94.33

config

model | log

Citation

@inproceedings{xie2017aggregated,
  title={Aggregated residual transformations for deep neural networks},
  author={Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He, Kaiming},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1492--1500},
  year={2017}
}
Read the Docs v: latest
Versions
master
latest
1.x
dev-1.x
Downloads
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.