Shortcuts

RepMLP

Abstract

We propose RepMLP, a multi-layer-perceptron-style neural network building block for image recognition, which is composed of a series of fully-connected (FC) layers. Compared to convolutional layers, FC layers are more efficient, better at modeling the long-range dependencies and positional patterns, but worse at capturing the local structures, hence usually less favored for image recognition. We propose a structural re-parameterization technique that adds local prior into an FC to make it powerful for image recognition. Specifically, we construct convolutional layers inside a RepMLP during training and merge them into the FC for inference. On CIFAR, a simple pure-MLP model shows performance very close to CNN. By inserting RepMLP in traditional CNN, we improve ResNets by 1.8% accuracy on ImageNet, 2.9% for face recognition, and 2.3% mIoU on Cityscapes with lower FLOPs. Our intriguing findings highlight that combining the global representational capacity and positional perception of FC with the local prior of convolution can improve the performance of neural network with faster speed on both the tasks with translation invariance (e.g., semantic segmentation) and those with aligned images and positional patterns (e.g., face recognition).

Results and models

ImageNet-1k

Model

Params(M)

Flops(G)

Top-1 (%)

Top-5 (%)

Config

Download

RepMLP-B224*

68.24

6.71

80.41

95.12

train_cfg | deploy_cfg

model

RepMLP-B256*

96.45

9.69

81.11

95.5

train_cfg | deploy_cfg

model

Models with * are converted from the official repo.. The config files of these models are only for validation. We don’t ensure these config files’ training accuracy and welcome you to contribute your reproduction results.

How to use

The checkpoints provided are all training-time models. Use the reparameterize tool to switch them to more efficient inference-time architecture, which not only has fewer parameters but also less calculations.

Use tool

Use provided tool to reparameterize the given model and save the checkpoint:

python tools/convert_models/reparameterize_model.py ${CFG_PATH} ${SRC_CKPT_PATH} ${TARGET_CKPT_PATH}

${CFG_PATH} is the config file, ${SRC_CKPT_PATH} is the source chenpoint file, ${TARGET_CKPT_PATH} is the target deploy weight file path.

To use reparameterized weights, the config file must switch to the deploy config files.

python tools/test.py ${Deploy_CFG} ${Deploy_Checkpoint} --metrics accuracy

In the code

Use backbone.switch_to_deploy() or classificer.backbone.switch_to_deploy() to switch to the deploy mode. For example:

from mmcls.models import build_backbone

backbone_cfg=dict(type='RepMLPNet', arch='B', img_size=224, reparam_conv_kernels=(1, 3), deploy=False)
backbone = build_backbone(backbone_cfg)
backbone.switch_to_deploy()

or

from mmcls.models import build_classifier

cfg = dict(
    type='ImageClassifier',
    backbone=dict(
        type='RepMLPNet',
        arch='B',
        img_size=224,
        reparam_conv_kernels=(1, 3),
        deploy=False),
    neck=dict(type='GlobalAveragePooling'),
    head=dict(
        type='LinearClsHead',
        num_classes=1000,
        in_channels=768,
        loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
        topk=(1, 5),
    ))

classifier = build_classifier(cfg)
classifier.backbone.switch_to_deploy()

Citation

@article{ding2021repmlp,
  title={Repmlp: Re-parameterizing convolutions into fully-connected layers for image recognition},
  author={Ding, Xiaohan and Xia, Chunlong and Zhang, Xiangyu and Chu, Xiaojie and Han, Jungong and Ding, Guiguang},
  journal={arXiv preprint arXiv:2105.01883},
  year={2021}
}
Read the Docs v: dev-1.x
Versions
latest
stable
1.x
dev-1.x
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.