Shortcuts

ClsDataPreprocessor

class mmcls.models.utils.data_preprocessor.ClsDataPreprocessor(mean=None, std=None, pad_size_divisor=1, pad_value=0, to_rgb=False, to_onehot=False, num_classes=None, batch_augments=None)[source]

Image pre-processor for classification tasks.

Comparing with the mmengine.model.ImgDataPreprocessor,

  1. It won’t do normalization if mean is not specified.

  2. It does normalization and color space conversion after stacking batch.

  3. It supports batch augmentations like mixup and cutmix.

It provides the data pre-processing as follows

  • Collate and move data to the target device.

  • Pad inputs to the maximum size of current batch with defined pad_value. The padding size can be divisible by a defined pad_size_divisor

  • Stack inputs to batch_inputs.

  • Convert inputs from bgr to rgb if the shape of input is (3, H, W).

  • Normalize image with defined std and mean.

  • Do batch augmentations like Mixup and Cutmix during training.

Parameters
  • mean (Sequence[Number], optional) – The pixel mean of R, G, B channels. Defaults to None.

  • std (Sequence[Number], optional) – The pixel standard deviation of R, G, B channels. Defaults to None.

  • pad_size_divisor (int) – The size of padded image should be divisible by pad_size_divisor. Defaults to 1.

  • pad_value (Number) – The padded pixel value. Defaults to 0.

  • to_rgb (bool) – whether to convert image from BGR to RGB. Defaults to False.

  • to_onehot (bool) – Whether to generate one-hot format gt-labels and set to data samples. Defaults to False.

  • num_classes (int, optional) – The number of classes. Defaults to None.

  • batch_augments (dict, optional) – The batch augmentations settings, including “augments” and “probs”. For more details, see mmcls.models.RandomBatchAugment.

forward(data, training=False)[source]

Perform normalization, padding, bgr2rgb conversion and batch augmentation based on BaseDataPreprocessor.

Parameters
  • data (dict) – data sampled from dataloader.

  • training (bool) – Whether to enable training time augmentation.

Returns

Data in the same format as the model input.

Return type

dict

Read the Docs v: 1.x
Versions
master
latest
1.x
dev-1.x
Downloads
html
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.