
MMClassification Documentation
Release 0.18.0

MMClassification Contributors

Apr 07, 2023

GET STARTED

1 Installation 3

2 Getting Started 7

3 Tutorial 1: Learn about Configs 13

4 Tutorial 2: Fine-tune Models 25

5 Tutorial 3: Adding New Dataset 31

6 Tutorial 4: Custom Data Pipelines 35

7 Tutorial 5: Adding New Modules 39

8 Tutorial 6: Customize Schedule 45

9 Tutorial 7: Customize Runtime Settings 53

10 Model Zoo Summary 59

11 Model Zoo 61

12 MLP-Mixer: An all-MLP Architecture for Vision 63

13 MobileNetV2: Inverted Residuals and Linear Bottlenecks 65

14 Searching for MobileNetV3 67

15 Designing Network Design Spaces 69

16 Repvgg: Making vgg-style convnets great again 71

17 Res2Net: A New Multi-scale Backbone Architecture 73

18 Deep Residual Learning for Image Recognition 75

19 Aggregated Residual Transformations for Deep Neural Networks 77

20 Squeeze-and-Excitation Networks 79

21 ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices 81

22 Shufflenet v2: Practical guidelines for efficient cnn architecture design 83

i

23 Swin Transformer: Hierarchical Vision Transformer using Shifted Windows 85

24 Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet 87

25 Transformer in Transformer 89

26 Very Deep Convolutional Networks for Large-Scale Image Recognition 91

27 An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale 93

28 Pytorch to ONNX (Experimental) 95

29 ONNX to TensorRT (Experimental) 99

30 Pytorch to TorchScript (Experimental) 101

31 Model Serving 103

32 Visualization 105

33 Contributing to OpenMMLab 109

34 mmcls.apis 111

35 mmcls.core 113

36 mmcls.models 115

37 mmcls.datasets 117

38 mmcls.utils 119

39 Indices and tables 121

ii

MMClassification Documentation, Release 0.18.0

You can switch between Chinese and English documentation in the lower-left corner of the layout.

您可以在页面左下角切换中英文文档。

GET STARTED 1

MMClassification Documentation, Release 0.18.0

2 GET STARTED

CHAPTER

ONE

INSTALLATION

1.1 Requirements

• Python 3.6+

• PyTorch 1.5+

• MMCV

The compatible MMClassification and MMCV versions are as below. Please install the correct version of MMCV to
avoid installation issues.

Note: Since the master branch is under frequent development, the mmcv version dependency may be inaccurate. If
you encounter problems when using the master branch, please try to update mmcv to the latest version.

1.2 Install MMClassification

a. Create a conda virtual environment and activate it.

conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab

b. Install PyTorch and torchvision following the official instructions, e.g.,

conda install pytorch torchvision -c pytorch

Note: Make sure that your compilation CUDA version and runtime CUDA version match. You can check the supported
CUDA version for precompiled packages on the PyTorch website.

E.g.1 If you have CUDA 10.1 installed under /usr/local/cuda and would like to install PyTorch 1.5.1, you need
to install the prebuilt PyTorch with CUDA 10.1.

conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 -c pytorch

E.g.2 If you have CUDA 11.3 installed under /usr/local/cuda and would like to install PyTorch 1.10.0., you need
to install the prebuilt PyTorch with CUDA 11.3.

conda install pytorch==1.10.0 torchvision==0.11.1 cudatoolkit=11.3 -c pytorch

3

https://github.com/open-mmlab/mmcv
https://pytorch.org/
https://pytorch.org/

MMClassification Documentation, Release 0.18.0

If you build PyTorch from source instead of installing the prebuilt package, you can use more CUDA versions such as
9.0.

c. Install MMClassification repository.

1.2.1 Release version

We recommend you to install MMClassification with MIM.

pip install git+https://github.com/open-mmlab/mim.git
mim install mmcls

MIM can automatically install OpenMMLab projects and their requirements, and it can also help us to train, parameter
search and pretrain model download.

Or, you can install MMClassification with pip:

pip install mmcls

1.2.2 Develop version

First, clone the MMClassification repository.

git clone https://github.com/open-mmlab/mmclassification.git
cd mmclassification

And then, install build requirements and install MMClassification.

pip install -e . # or "python setup.py develop"

Note: Following above instructions, MMClassification is installed on dev mode, any local modifications made to the
code will take effect without the need to reinstall it (unless you submit some commits and want to update the version
number).

1.2.3 Another option: Docker Image

We provide a Dockerfile to build an image.

build an image with PyTorch 1.6.0, CUDA 10.1, CUDNN 7.
docker build -f ./docker/Dockerfile --rm -t mmcls:torch1.6.0-cuda10.1-cudnn7 .

Important: Make sure you’ve installed the nvidia-container-toolkit.

Run a container built from mmcls image with command:

docker run --gpus all --shm-size=8g -it -v {DATA_DIR}:/workspace/mmclassification/data␣
→˓mmcls:torch1.6.0-cuda10.1-cudnn7 /bin/bash

4 Chapter 1. Installation

https://github.com/open-mmlab/mim
https://github.com/open-mmlab/mmclassification/blob/master/docker/Dockerfile
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#docker

MMClassification Documentation, Release 0.18.0

1.3 Using multiple MMClassification versions

The train and test scripts already modify the PYTHONPATH to ensure the script use the MMClassification in the current
directory.

To use the default MMClassification installed in the environment rather than that you are working with, you can remove
the following line in those scripts

PYTHONPATH="$(dirname $0)/..":$PYTHONPATH

1.3. Using multiple MMClassification versions 5

MMClassification Documentation, Release 0.18.0

6 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

This page provides basic tutorials about the usage of MMClassification.

2.1 Prepare datasets

It is recommended to symlink the dataset root to $MMCLASSIFICATION/data. If your folder structure is different, you
may need to change the corresponding paths in config files.

mmclassification
mmcls
tools
configs
docs
data

imagenet
meta
train
val

cifar
cifar-10-batches-py

mnist
train-images-idx3-ubyte
train-labels-idx1-ubyte
t10k-images-idx3-ubyte
t10k-labels-idx1-ubyte

For ImageNet, it has multiple versions, but the most commonly used one is ILSVRC 2012. It can be accessed with the
following steps.

1. Register an account and login to the download page.

2. Find download links for ILSVRC2012 and download the following two files

• ILSVRC2012_img_train.tar (~138GB)

• ILSVRC2012_img_val.tar (~6.3GB)

3. Untar the downloaded files

4. Download meta data using this script

For MNIST, CIFAR10 and CIFAR100, the datasets will be downloaded and unzipped automatically if they are not
found.

7

http://www.image-net.org/challenges/LSVRC/2012/
http://www.image-net.org/download-images
https://github.com/BVLC/caffe/blob/master/data/ilsvrc12/get_ilsvrc_aux.sh

MMClassification Documentation, Release 0.18.0

For using custom datasets, please refer to Tutorials 2: Adding New Dataset.

2.2 Inference with pretrained models

We provide scripts to inference a single image, inference a dataset and test a dataset (e.g., ImageNet).

2.2.1 Inference a single image

python demo/image_demo.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_FILE}

Example
python demo/image_demo.py demo/demo.JPEG configs/resnet/resnet50_8xb32_in1k.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_8xb32_in1k_20210831-

→˓ea4938fc.pth

2.2.2 Inference and test a dataset

• single GPU

• single node multiple GPU

• multiple node

You can use the following commands to infer a dataset.

single-gpu
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out $
→˓{RESULT_FILE}]

multi-gpu
./tools/dist_test.sh ${CONFIG_FILE} ${CHECKPOINT_FILE} ${GPU_NUM} [--metrics ${METRICS}]␣
→˓[--out ${RESULT_FILE}]

multi-node in slurm environment
python tools/test.py ${CONFIG_FILE} ${CHECKPOINT_FILE} [--metrics ${METRICS}] [--out $
→˓{RESULT_FILE}] --launcher slurm

Optional arguments:

• RESULT_FILE: Filename of the output results. If not specified, the results will not be saved to a file. Support
formats include json, yaml and pickle.

• METRICS：Items to be evaluated on the results, like accuracy, precision, recall, etc.

Examples:

Assume that you have already downloaded the checkpoints to the directory checkpoints/. Infer ResNet-50 on Ima-
geNet validation set to get predicted labels and their corresponding predicted scores.

python tools/test.py configs/resnet/resnet50_8xb16_cifar10.py \
https://download.openmmlab.com/mmclassification/v0/resnet/resnet50_b16x8_cifar10_

→˓20210528-f54bfad9.pth \
--out result.pkl

8 Chapter 2. Getting Started

MMClassification Documentation, Release 0.18.0

2.3 Train a model

MMClassification implements distributed training and non-distributed training, which uses
MMDistributedDataParallel and MMDataParallel respectively.

All outputs (log files and checkpoints) will be saved to the working directory, which is specified by work_dir in the
config file.

By default we evaluate the model on the validation set after each epoch, you can change the evaluation interval by
adding the interval argument in the training config.

evaluation = dict(interval=12) # Evaluate the model per 12 epochs.

2.3.1 Train with a single GPU

python tools/train.py ${CONFIG_FILE} [optional arguments]

If you want to specify the working directory in the command, you can add an argument --work_dir
${YOUR_WORK_DIR}.

2.3.2 Train with multiple GPUs

./tools/dist_train.sh ${CONFIG_FILE} ${GPU_NUM} [optional arguments]

Optional arguments are:

• --no-validate (not suggested): By default, the codebase will perform evaluation at every k (default value is
1) epochs during the training. To disable this behavior, use --no-validate.

• --work-dir ${WORK_DIR}: Override the working directory specified in the config file.

• --resume-from ${CHECKPOINT_FILE}: Resume from a previous checkpoint file.

Difference between resume-from and load-from: resume-from loads both the model weights and optimizer status,
and the epoch is also inherited from the specified checkpoint. It is usually used for resuming the training process that
is interrupted accidentally. load-from only loads the model weights and the training epoch starts from 0. It is usually
used for finetuning.

2.3.3 Train with multiple machines

If you run MMClassification on a cluster managed with slurm, you can use the script slurm_train.sh. (This script
also supports single machine training.)

[GPUS=${GPUS}] ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME} ${CONFIG_FILE} ${WORK_DIR}

You can check slurm_train.sh for full arguments and environment variables.

If you have just multiple machines connected with ethernet, you can refer to PyTorch launch utility. Usually it is slow
if you do not have high speed networking like InfiniBand.

2.3. Train a model 9

https://slurm.schedmd.com/
https://github.com/open-mmlab/mmclassification/blob/master/tools/slurm_train.sh
https://pytorch.org/docs/stable/distributed_deprecated.html#launch-utility

MMClassification Documentation, Release 0.18.0

2.3.4 Launch multiple jobs on a single machine

If you launch multiple jobs on a single machine, e.g., 2 jobs of 4-GPU training on a machine with 8 GPUs, you need
to specify different ports (29500 by default) for each job to avoid communication conflict.

If you use dist_train.sh to launch training jobs, you can set the port in commands.

CUDA_VISIBLE_DEVICES=0,1,2,3 PORT=29500 ./tools/dist_train.sh ${CONFIG_FILE} 4
CUDA_VISIBLE_DEVICES=4,5,6,7 PORT=29501 ./tools/dist_train.sh ${CONFIG_FILE} 4

If you use launch training jobs with Slurm, you need to modify the config files (usually the 6th line from the bottom in
config files) to set different communication ports.

In config1.py,

dist_params = dict(backend='nccl', port=29500)

In config2.py,

dist_params = dict(backend='nccl', port=29501)

Then you can launch two jobs with config1.py ang config2.py.

CUDA_VISIBLE_DEVICES=0,1,2,3 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config1.py ${WORK_DIR}
CUDA_VISIBLE_DEVICES=4,5,6,7 GPUS=4 ./tools/slurm_train.sh ${PARTITION} ${JOB_NAME}␣
→˓config2.py ${WORK_DIR}

2.4 Useful tools

We provide lots of useful tools under tools/ directory.

2.4.1 Get the FLOPs and params (experimental)

We provide a script adapted from flops-counter.pytorch to compute the FLOPs and params of a given model.

python tools/get_flops.py ${CONFIG_FILE} [--shape ${INPUT_SHAPE}]

You will get the result like this.

==============================
Input shape: (3, 224, 224)
Flops: 4.12 GFLOPs
Params: 25.56 M
==============================

Warning: This tool is still experimental and we do not guarantee that the number is correct. You may well use
the result for simple comparisons, but double check it before you adopt it in technical reports or papers.

• FLOPs are related to the input shape while parameters are not. The default input shape is (1, 3, 224, 224).

10 Chapter 2. Getting Started

https://github.com/sovrasov/flops-counter.pytorch

MMClassification Documentation, Release 0.18.0

• Some operators are not counted into FLOPs like GN and custom operators. Refer to mmcv.cnn.
get_model_complexity_info() for details.

2.4.2 Publish a model

Before you publish a model, you may want to

1. Convert model weights to CPU tensors.

2. Delete the optimizer states.

3. Compute the hash of the checkpoint file and append the hash id to the filename.

python tools/convert_models/publish_model.py ${INPUT_FILENAME} ${OUTPUT_FILENAME}

E.g.,

python tools/convert_models/publish_model.py work_dirs/resnet50/latest.pth imagenet_
→˓resnet50.pth

The final output filename will be imagenet_resnet50_{date}-{hash id}.pth.

2.5 Tutorials

Currently, we provide five tutorials for users.

• learn about config

• finetune models

• add new dataset

• design data pipeline

• add new modules

• customize schedule

• customize runtime settings.

2.5. Tutorials 11

https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/cnn/utils/flops_counter.py

MMClassification Documentation, Release 0.18.0

12 Chapter 2. Getting Started

CHAPTER

THREE

TUTORIAL 1: LEARN ABOUT CONFIGS

MMClassification mainly uses python files as configs. The design of our configuration file system integrates modularity
and inheritance, facilitating users to conduct various experiments. All configuration files are placed in the configs
folder, which mainly contains the primitive configuration folder of _base_ and many algorithm folders such as resnet,
swin_transformer, vision_transformer, etc.

If you wish to inspect the config file, you may run python tools/analysis/print_config.py /PATH/TO/
CONFIG to see the complete config.

• Config File and Checkpoint Naming Convention

• Config File Structure

• Inherit and Modify Config File

– Use intermediate variables in configs

– Ignore some fields in the base configs

– Use some fields in the base configs

• Modify config through script arguments

• Import user-defined modules

• FAQ

3.1 Config File and Checkpoint Naming Convention

We follow the below convention to name config files. Contributors are advised to follow the same style. The config
file names are divided into four parts: algorithm info, module information, training information and data information.
Logically, different parts are concatenated by underscores '_', and words in the same part are concatenated by dashes
'-'.

{algorithm info}_{module info}_{training info}_{data info}.py

• algorithm info：algorithm information, model name and neural network architecture, such as resnet, etc.;

• module info： module information is used to represent some special neck, head and pretrain information;

• training info：Training information, some training schedule, including batch size, lr schedule, data augment
and the like;

• data info：Data information, dataset name, input size and so on, such as imagenet, cifar, etc.;

13

MMClassification Documentation, Release 0.18.0

3.1.1 Algorithm information

The main algorithm name and the corresponding branch architecture information. E.g：

• resnet50

• mobilenet-v3-large

• vit-small-patch32 : patch32 represents the size of the partition in ViT algorithm;

• seresnext101-32x4d : SeResNet101 network structure, 32x4d means that groups and width_per_group
are 32 and 4 respectively in Bottleneck;

3.1.2 Module information

Some special neck, head and pretrain information. In classification tasks, pretrain information is the most com-
monly used:

• in21k-pre : pre-trained on ImageNet21k;

• in21k-pre-3rd-party : pre-trained on ImageNet21k and the checkpoint is converted from a third-party repos-
itory;

3.1.3 Training information

Training schedule, including training type, batch size, lr schedule, data augment, special loss functions and so
on:

• format {gpu x batch_per_gpu}, such as 8xb32

Training type (mainly seen in the transformer network, such as the ViT algorithm, which is usually divided into two
training type: pre-training and fine-tuning):

• ft : configuration file for fine-tuning

• pt : configuration file for pretraining

Training recipe. Usually, only the part that is different from the original paper will be marked. These methods will be
arranged in the order {pipeline aug}-{train aug}-{loss trick}-{scheduler}-{epochs}.

• coslr-200e : use cosine scheduler to train 200 epochs

• autoaug-mixup-lbs-coslr-50e : use autoaug, mixup, label smooth, cosine scheduler to train 50
epochs

3.1.4 Data information

• in1k : ImageNet1k dataset, default to use the input image size of 224x224;

• in21k : ImageNet21k dataset, also called ImageNet22k dataset, default to use the input image size of 224x224;

• in1k-384px : Indicates that the input image size is 384x384;

• cifar100

14 Chapter 3. Tutorial 1: Learn about Configs

MMClassification Documentation, Release 0.18.0

3.1.5 Config File Name Example

repvgg-D2se_deploy_4xb64-autoaug-lbs-mixup-coslr-200e_in1k.py

• repvgg-D2se: Algorithm information

– repvgg: The main algorithm.

– D2se: The architecture.

• deploy: Module information, means the backbone is in the deploy state.

• 4xb64-autoaug-lbs-mixup-coslr-200e: Training information.

– 4xb64: Use 4 GPUs and the size of batches per GPU is 64.

– autoaug: Use AutoAugment in training pipeline.

– lbs: Use label smoothing loss.

– mixup: Use mixup training augment method.

– coslr: Use cosine learning rate scheduler.

– 200e: Train the model for 200 epochs.

• in1k: Dataset information. The config is for ImageNet1k dataset and the input size is 224x224.

Note: Some configuration files currently do not follow this naming convention, and related files will be updated in the
near future.

3.1.6 Checkpoint Naming Convention

The naming of the weight mainly includes the configuration file name, date and hash value.

{config_name}_{date}-{hash}.pth

3.2 Config File Structure

There are four kinds of basic component file in the configs/_base_ folders, namely：

• models

• datasets

• schedules

• runtime

You can easily build your own training config file by inherit some base config files. And the configs that are composed
by components from _base_ are called primitive.

For easy understanding, we use ResNet50 primitive config as a example and comment the meaning of each line. For
more detaile, please refer to the API documentation.

3.2. Config File Structure 15

https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/models
https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/datasets
https://github.com/open-mmlab/mmclassification/tree/master/configs/_base_/schedules
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/default_runtime.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/resnet/resnet50_8xb32_in1k.py

MMClassification Documentation, Release 0.18.0

base = [
'../_base_/models/resnet50.py', # model
'../_base_/datasets/imagenet_bs32.py', # data
'../_base_/schedules/imagenet_bs256.py', # training schedule
'../_base_/default_runtime.py' # runtime setting

]

The four parts are explained separately below, and the above-mentioned ResNet50 primitive config are also used as an
example.

3.2.1 model

The parameter "model" is a python dictionary in the configuration file, which mainly includes information such as
network structure and loss function:

• type： Classifier name, MMCls supports ImageClassifier, refer to API documentation.

• backbone： Backbone configs, refer to API documentation for available options.

• neck：Neck network name, MMCls supports GlobalAveragePooling, please refer to API documentation.

• head: Head network name, MMCls supports single-label and multi-label classification head networks, available
options refer to API documentation.

– loss: Loss function type, supports CrossEntropyLoss, LabelSmoothLoss etc., For available options,
refer to API documentation.

• train_cfg：Training augment config, MMCls supports mixup, cutmix and other augments.

Note: The ‘type’ in the configuration file is not a constructed parameter, but a class name.

model = dict(
type='ImageClassifier', # Classifier name
backbone=dict(

type='ResNet', # Backbones name
depth=50, # depth of backbone, ResNet has options of 18, 34, 50,␣

→˓101, 152.
num_stages=4, # number of stages，The feature maps generated by these␣

→˓states are used as the input for the subsequent neck and head.
out_indices=(3,), # The output index of the output feature maps.
frozen_stages=-1, # the stage to be frozen, '-1' means not be forzen
style='pytorch'), # The style of backbone, 'pytorch' means that stride 2␣

→˓layers are in 3x3 conv, 'caffe' means stride 2 layers are in 1x1 convs.
neck=dict(type='GlobalAveragePooling'), # neck network name
head=dict(

type='LinearClsHead', # linear classification head，
num_classes=1000, # The number of output categories, consistent with the␣

→˓number of categories in the dataset
in_channels=2048, # The number of input channels, consistent with the␣

→˓output channel of the neck
loss=dict(type='CrossEntropyLoss', loss_weight=1.0), # Loss function␣

→˓configuration information
topk=(1, 5), # Evaluation index, Top-k accuracy rate, here is the␣

→˓accuracy rate of top1 and top5
(continues on next page)

16 Chapter 3. Tutorial 1: Learn about Configs

https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.classifiers
https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.backbones
https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.necks
https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.heads
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_label_smooth.py
https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.losses
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_mixup.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/models/resnet50_cutmix.py

MMClassification Documentation, Release 0.18.0

(continued from previous page)

))

3.2.2 data

The parameter "data" is a python dictionary in the configuration file, which mainly includes information to construct
dataloader:

• samples_per_gpu : the BatchSize of each GPU when building the dataloader

• workers_per_gpu : the number of threads per GPU when building dataloader

• train ｜ val ｜ test : config to construct dataset

– type: Dataset name, MMCls supports ImageNet, Cifar etc., refer to API documentation

– data_prefix : Dataset root directory

– pipeline : Data processing pipeline, refer to related tutorial CUSTOM DATA PIPELINES

The parameter evaluation is also a dictionary, which is the configuration information of evaluation hook, mainly
including evaluation interval, evaluation index, etc..

dataset settings
dataset_type = 'ImageNet' # dataset name，
img_norm_cfg = dict(# Image normalization config to normalize the input images

mean=[123.675, 116.28, 103.53], # Mean values used to pre-training the pre-trained␣
→˓backbone models

std=[58.395, 57.12, 57.375], # Standard variance used to pre-training the pre-
→˓trained backbone models

to_rgb=True) # Whether to invert the color channel, rgb2bgr or␣
→˓bgr2rgb.
train data pipeline
train_pipeline = [

dict(type='LoadImageFromFile'), # First pipeline to load images from␣
→˓file path

dict(type='RandomResizedCrop', size=224), # RandomResizedCrop
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'), # Randomly flip the␣

→˓picture horizontally with a probability of 0.5
dict(type='Normalize', **img_norm_cfg), # normalization
dict(type='ImageToTensor', keys=['img']), # convert image from numpy into torch.

→˓Tensor
dict(type='ToTensor', keys=['gt_label']), # convert gt_label into torch.Tensor
dict(type='Collect', keys=['img', 'gt_label']) # Pipeline that decides which keys in␣

→˓the data should be passed to the detector
]
test data pipeline
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=(256, -1)),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']) # do not pass gt_label while testing

]
(continues on next page)

3.2. Config File Structure 17

https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.datasets
https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html

MMClassification Documentation, Release 0.18.0

(continued from previous page)

data = dict(
samples_per_gpu=32, # Batch size of a single GPU
workers_per_gpu=2, # Worker to pre-fetch data for each single GPU
train=dict(# Train dataset config
train=dict(# train data config

type=dataset_type, # dataset name
data_prefix='data/imagenet/train', # Dataset root, when ann_file does not exist,

→˓ the category information is automatically obtained from the root folder
pipeline=train_pipeline), # train data pipeline

val=dict(# val data config
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt', # ann_file existes, the category␣

→˓information is obtained from file
pipeline=test_pipeline),

test=dict(# test data config
type=dataset_type,
data_prefix='data/imagenet/val',
ann_file='data/imagenet/meta/val.txt',
pipeline=test_pipeline))

evaluation = dict(# The config to build the evaluation hook, refer to https://
→˓github.com/open-mmlab/mmdetection/blob/master/mmdet/core/evaluation/eval_hooks.py#L7␣
→˓for more details.

interval=1, # Evaluation interval
metric='accuracy') # Metrics used during evaluation

3.2.3 training schedule

Mainly include optimizer settings, optimizer hook settings, learning rate schedule and runner settings:

• optimizer: optimizer setting , support all optimizers in pytorch, refer to related mmcv documentation.

• optimizer_config: optimizer hook configuration file, such as setting gradient limit, refer to related mmcv
code.

• lr_config: Learning rate scheduler, supports “CosineAnnealing”, “Step”, “Cyclic”, etc. refer to related mmcv
documentation for more options.

• runner: For runner, please refer to mmcv for runner introduction document.

he configuration file used to build the optimizer, support all optimizers in PyTorch.
optimizer = dict(type='SGD', # Optimizer type

lr=0.1, # Learning rate of optimizers, see detail usages of␣
→˓the parameters in the documentation of PyTorch

momentum=0.9, # Momentum
weight_decay=0.0001) # Weight decay of SGD

Config used to build the optimizer hook, refer to https://github.com/open-mmlab/mmcv/
→˓blob/master/mmcv/runner/hooks/optimizer.py#L8 for implementation details.
optimizer_config = dict(grad_clip=None) # Most of the methods do not use gradient clip
Learning rate scheduler config used to register LrUpdater hook
lr_config = dict(policy='step', # The policy of scheduler, also support␣
→˓CosineAnnealing, Cyclic, etc. Refer to details of supported LrUpdater from https://
→˓github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py#L9.

(continues on next page)

18 Chapter 3. Tutorial 1: Learn about Configs

https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py#L8
https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/hooks/lr_updater.html#LrUpdaterHook
https://mmcv.readthedocs.io/en/latest/understand_mmcv/runner.html

MMClassification Documentation, Release 0.18.0

(continued from previous page)

step=[30, 60, 90]) # Steps to decay the learning rate
runner = dict(type='EpochBasedRunner', # Type of runner to use (i.e. IterBasedRunner␣
→˓or EpochBasedRunner)

max_epochs=100) # Runner that runs the workflow in total max_epochs. For␣
→˓IterBasedRunner use `max_iters`

3.2.4 runtime setting

This part mainly includes saving the checkpoint strategy, log configuration, training parameters, breakpoint weight
path, working directory, etc..

Config to set the checkpoint hook, Refer to https://github.com/open-mmlab/mmcv/blob/
→˓master/mmcv/runner/hooks/checkpoint.py for implementation.
checkpoint_config = dict(interval=1) # The save interval is 1
config to register logger hook
log_config = dict(

interval=100, # Interval to print the log
hooks=[

dict(type='TextLoggerHook'), # The Tensorboard logger is also supported
dict(type='TensorboardLoggerHook')

])

dist_params = dict(backend='nccl') # Parameters to setup distributed training, the␣
→˓port can also be set.
log_level = 'INFO' # The output level of the log.
resume_from = None # Resume checkpoints from a given path, the training will␣
→˓be resumed from the epoch when the checkpoint's is saved.
workflow = [('train', 1)] # Workflow for runner. [('train', 1)] means there is only␣
→˓one workflow and the workflow named 'train' is executed once.
work_dir = 'work_dir' # Directory to save the model checkpoints and logs for␣
→˓the current experiments.

3.3 Inherit and Modify Config File

For easy understanding, we recommend contributors to inherit from existing methods.

For all configs under the same folder, it is recommended to have only one primitive config. All other configs should
inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For example, if your config file is based on ResNet with some other modification, you can first inherit the basic ResNet
structure, dataset and other training setting by specifying _base_ ='./resnet50_8xb32_in1k.py' (The path rela-
tive to your config file), and then modify the necessary parameters in the config file. A more specific example, now we
want to use almost all configs in configs/resnet/resnet50_8xb32_in1k.py, but change the number of training
epochs from 100 to 300, modify when to decay the learning rate, and modify the dataset path, you can create a new
config file configs/resnet/resnet50_8xb32-300e_in1k.py with content as below:

base = './resnet50_8xb32_in1k.py'

runner = dict(max_epochs=300)
lr_config = dict(step=[150, 200, 250])

(continues on next page)

3.3. Inherit and Modify Config File 19

MMClassification Documentation, Release 0.18.0

(continued from previous page)

data = dict(
train=dict(data_prefix='mydata/imagenet/train'),
val=dict(data_prefix='mydata/imagenet/train',),
test=dict(data_prefix='mydata/imagenet/train',)

)

3.3.1 Use intermediate variables in configs

Some intermediate variables are used in the configuration file. The intermediate variables make the configuration file
clearer and easier to modify.

For example, train_pipeline / test_pipeline is the intermediate variable of the data pipeline. We first need to de-
fine train_pipeline / test_pipeline, and then pass them to data. If you want to modify the size of the input image
during training and testing, you need to modify the intermediate variables of train_pipeline / test_pipeline.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=384, backend='pillow',),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=384, backend='pillow'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline))

3.3.2 Ignore some fields in the base configs

Sometimes, you need to set _delete_=True to ignore some domain content in the basic configuration file. You can
refer to mmcv for more instructions.

The following is an example. If you wangt to use cosine schedule in the above ResNet50 case, just using inheritance
and directly modify it will report get unexcepected keyword'step' error, because the 'step' field of the basic
config in lr_config domain information is reserved, and you need to add _delete_ =True to ignore the content of
lr_config related fields in the basic configuration file:

base = '../../configs/resnet/resnet50_8xb32_in1k.py'

(continues on next page)

20 Chapter 3. Tutorial 1: Learn about Configs

https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#inherit-from-base-config-with-ignored-fields

MMClassification Documentation, Release 0.18.0

(continued from previous page)

lr_config = dict(
delete=True,
policy='CosineAnnealing',
min_lr=0,
warmup='linear',
by_epoch=True,
warmup_iters=5,
warmup_ratio=0.1

)

3.3.3 Use some fields in the base configs

Sometimes, you may refer to some fields in the _base_ config, so as to avoid duplication of definitions. You can refer
to mmcv for some more instructions.

The following is an example of using auto augment in the training data preprocessing pipeline， refer to configs/
base/datasets/imagenet_bs64_autoaug.py. When defining train_pipeline, just add the definition file
name of auto augment to _base_, and then use {{_base_.auto_increasing_policies}} to reference the vari-
ables:

base = ['./pipelines/auto_aug.py']

dataset settings
dataset_type = 'ImageNet'
img_norm_cfg = dict(

mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='AutoAugment', policies={{_base_.auto_increasing_policies}}),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [...]
data = dict(

samples_per_gpu=64,
workers_per_gpu=2,
train=dict(..., pipeline=train_pipeline),
val=dict(..., pipeline=test_pipeline))

evaluation = dict(interval=1, metric='accuracy')

3.3. Inherit and Modify Config File 21

https://mmcv.readthedocs.io/en/latest/understand_mmcv/config.html#reference-variables-from-base
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/datasets/imagenet_bs64_autoaug.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/_base_/datasets/imagenet_bs64_autoaug.py

MMClassification Documentation, Release 0.18.0

3.4 Modify config through script arguments

When users use the script “tools/train.py” or “tools/test.py” to submit tasks or use some other tools, they can directly
modify the content of the configuration file used by specifying the --cfg-options parameter.

• Update config keys of dict chains.

The config options can be specified following the order of the dict keys in the original config. For example,
--cfg-options model.backbone.norm_eval=False changes the all BN modules in model backbones to
train mode.

• Update keys inside a list of configs.

Some config dicts are composed as a list in your config. For example, the training pipeline
data.train.pipeline is normally a list e.g. [dict(type='LoadImageFromFile'),
dict(type='TopDownRandomFlip', flip_prob=0.5), ...]. If you want to change 'flip_prob=0.5'
to 'flip_prob=0.0' in the pipeline, you may specify --cfg-options data.train.pipeline.1.
flip_prob=0.0.

• Update values of list/tuples.

If the value to be updated is a list or a tuple. For example, the config file normally sets workflow=[('train',
1)]. If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed
inside the quotation marks in the specified value.

3.5 Import user-defined modules

Note: This part may only be used when using MMClassification as a third party library to build your own project, and
beginners can skip it.

After studying the follow-up tutorials ADDING NEW DATASET, CUSTOM DATA PIPELINES, ADDING NEW
MODULES. You may use MMClassification to complete your project and create new classes of datasets, models, data
enhancements, etc. in the project. In order to streamline the code, you can use MMClassification as a third-party
library, you just need to keep your own extra code and import your own custom module in the configuration files. For
examples, you may refer to OpenMMLab Algorithm Competition Project .

Add the following code to your own configuration files:

custom_imports = dict(
imports=['your_dataset_class',

'your_transforme_class',
'your_model_class',
'your_module_class'],

allow_failed_imports=False)

22 Chapter 3. Tutorial 1: Learn about Configs

https://mmclassification.readthedocs.io/en/latest/tutorials/new_dataset.html
https://mmclassification.readthedocs.io/en/latest/tutorials/data_pipeline.html
https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html
https://mmclassification.readthedocs.io/en/latest/tutorials/new_modules.html
https://github.com/zhangrui-wolf/openmmlab-competition-2021

MMClassification Documentation, Release 0.18.0

3.6 FAQ

• None

3.6. FAQ 23

MMClassification Documentation, Release 0.18.0

24 Chapter 3. Tutorial 1: Learn about Configs

CHAPTER

FOUR

TUTORIAL 2: FINE-TUNE MODELS

Classification models pre-trained on the ImageNet dataset have been demonstrated to be effective for other datasets and
other downstream tasks. This tutorial provides instructions for users to use the models provided in the Model Zoo for
other datasets to obtain better performance.

There are two steps to fine-tune a model on a new dataset.

• Add support for the new dataset following Tutorial 2: Adding New Dataset.

• Modify the configs as will be discussed in this tutorial.

Assume we have a ResNet-50 model pre-trained on the ImageNet-2012 dataset and want to take the fine-tuning on the
CIFAR-10 dataset, we need to modify five parts in the config.

4.1 Inherit base configs

At first, create a new config file configs/tutorial/resnet50_finetune_cifar.py to store our configs. Of
course, the path can be customized by yourself.

To reuse the common parts among different configs, we support inheriting configs from multiple existing configs.
To fine-tune a ResNet-50 model, the new config needs to inherit configs/_base_/models/resnet50.py to build
the basic structure of the model. To use the CIFAR-10 dataset, the new config can also simply inherit configs/
base/datasets/cifar10_bs16.py. For runtime settings such as training schedules, the new config needs to
inherit configs/_base_/default_runtime.py.

To inherit all above configs, put the following code at the config file.

base = [
'../_base_/models/resnet50.py',
'../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'

]

Besides, you can also choose to write the whole contents rather than use inheritance, like configs/lenet/
lenet5_mnist.py.

25

https://github.com/open-mmlab/mmclassification/blob/master/configs/lenet/lenet5_mnist.py
https://github.com/open-mmlab/mmclassification/blob/master/configs/lenet/lenet5_mnist.py

MMClassification Documentation, Release 0.18.0

4.2 Modify model

When fine-tuning a model, usually we want to load the pre-trained backbone weights and train a new classification
head.

To load the pre-trained backbone, we need to change the initialization config of the backbone and use Pretrained
initialization function. Besides, in the init_cfg, we use prefix='backbone' to tell the initialization function to
remove the prefix of keys in the checkpoint, for example, it will change backbone.conv1 to conv1. And here we use
an online checkpoint, it will be downloaded during training, you can also download the model manually and use a local
path.

And then we need to modify the head according to the class numbers of the new datasets by just changing num_classes
in the head.

model = dict(
backbone=dict(

init_cfg=dict(
type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

Tip: Here we only need to set the part of configs we want to modify, because the inherited configs will be merged and
get the entire configs.

Sometimes, we want to freeze the first several layers’ parameters of the backbone, that will help the network to keep
ability to extract low-level information learnt from pre-trained model. In MMClassification, you can simply specify
how many layers to freeze by frozen_stages argument. For example, to freeze the first two layers’ parameters, just
use the following config:

model = dict(
backbone=dict(

frozen_stages=2,
init_cfg=dict(

type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

Note: Not all backbones support the frozen_stages argument by now. Please check the docs to confirm if your
backbone supports it.

26 Chapter 4. Tutorial 2: Fine-tune Models

https://mmclassification.readthedocs.io/en/latest/api.html#module-mmcls.models.backbones

MMClassification Documentation, Release 0.18.0

4.3 Modify dataset

When fine-tuning on a new dataset, usually we need to modify some dataset configs. Here, we need to modify the
pipeline to resize the image from 32 to 224 to fit the input size of the model pre-trained on ImageNet, and some other
configs.

img_norm_cfg = dict(
mean=[125.307, 122.961, 113.8575],
std=[51.5865, 50.847, 51.255],
to_rgb=False,

)
train_pipeline = [

dict(type='RandomCrop', size=32, padding=4),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label']),

]
test_pipeline = [

dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

4.4 Modify training schedule

The fine-tuning hyper parameters vary from the default schedule. It usually requires smaller learning rate and less
training epochs.

lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)

4.3. Modify dataset 27

MMClassification Documentation, Release 0.18.0

4.5 Start Training

Now, we have finished the fine-tuning config file as following:

base = [
'../_base_/models/resnet50.py',
'../_base_/datasets/cifar10_bs16.py', '../_base_/default_runtime.py'

]

Model config
model = dict(

backbone=dict(
frozen_stages=2,
init_cfg=dict(

type='Pretrained',
checkpoint='https://download.openmmlab.com/mmclassification/v0/resnet/

→˓resnet50_8xb32_in1k_20210831-ea4938fc.pth',
prefix='backbone',

)),
head=dict(num_classes=10),

)

Dataset config
img_norm_cfg = dict(

mean=[125.307, 122.961, 113.8575],
std=[51.5865, 50.847, 51.255],
to_rgb=False,

)
train_pipeline = [

dict(type='RandomCrop', size=32, padding=4),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label']),

]
test_pipeline = [

dict(type='Resize', size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),

]
data = dict(

train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

Training schedule config
lr is set for a batch size of 128
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)

(continues on next page)

28 Chapter 4. Tutorial 2: Fine-tune Models

MMClassification Documentation, Release 0.18.0

(continued from previous page)

learning policy
lr_config = dict(policy='step', step=[15])
runner = dict(type='EpochBasedRunner', max_epochs=200)
log_config = dict(interval=100)

Here we use 8 GPUs on your computer to train the model with the following command:

bash tools/dist_train.sh configs/tutorial/resnet50_finetune_cifar.py 8

Also, you can use only one GPU to train the model with the following command:

python tools/train.py configs/tutorial/resnet50_finetune_cifar.py

But wait, an important config need to be changed if using one GPU. We need to change the dataset config as following:

data = dict(
samples_per_gpu=128,
train=dict(pipeline=train_pipeline),
val=dict(pipeline=test_pipeline),
test=dict(pipeline=test_pipeline),

)

It’s because our training schedule is for a batch size of 128. If using 8 GPUs, just use samples_per_gpu=16 config in
the base config file, and the total batch size will be 128. But if using one GPU, you need to change it to 128 manually
to match the training schedule.

4.5. Start Training 29

MMClassification Documentation, Release 0.18.0

30 Chapter 4. Tutorial 2: Fine-tune Models

CHAPTER

FIVE

TUTORIAL 3: ADDING NEW DATASET

5.1 Customize datasets by reorganizing data

5.1.1 Reorganize dataset to existing format

The simplest way is to convert your dataset to existing dataset formats (ImageNet).

For training, it differentiates classes by folders. The directory of training data is as follows:

imagenet
...
train

n01440764
n01440764_10026.JPEG
n01440764_10027.JPEG
...

...
n15075141

n15075141_999.JPEG
n15075141_9993.JPEG
...

For validation, we provide a annotation list. Each line of the list contrains a filename and its corresponding ground-truth
labels. The format is as follows:

ILSVRC2012_val_00000001.JPEG 65
ILSVRC2012_val_00000002.JPEG 970
ILSVRC2012_val_00000003.JPEG 230
ILSVRC2012_val_00000004.JPEG 809
ILSVRC2012_val_00000005.JPEG 516

Note: The value of ground-truth labels should fall in range [0, num_classes - 1].

31

MMClassification Documentation, Release 0.18.0

5.1.2 An example of customized dataset

You can write a new Dataset class inherited from BaseDataset, and overwrite load_annotations(self), like
CIFAR10 and ImageNet. Typically, this function returns a list, where each sample is a dict, containing necessary data
information, e.g., img and gt_label.

Assume we are going to implement a Filelist dataset, which takes filelists for both training and testing. The format
of annotation list is as follows:

000001.jpg 0
000002.jpg 1

We can create a new dataset in mmcls/datasets/filelist.py to load the data.

import mmcv
import numpy as np

from .builder import DATASETS
from .base_dataset import BaseDataset

@DATASETS.register_module()
class Filelist(BaseDataset):

def load_annotations(self):
assert isinstance(self.ann_file, str)

data_infos = []
with open(self.ann_file) as f:

samples = [x.strip().split(' ') for x in f.readlines()]
for filename, gt_label in samples:

info = {'img_prefix': self.data_prefix}
info['img_info'] = {'filename': filename}
info['gt_label'] = np.array(gt_label, dtype=np.int64)
data_infos.append(info)

return data_infos

And add this dataset class in mmcls/datasets/__init__.py

from .base_dataset import BaseDataset
...
from .filelist import Filelist

__all__ = [
'BaseDataset', ... ,'Filelist'

]

Then in the config, to use Filelist you can modify the config as the following

train = dict(
type='Filelist',
ann_file = 'image_list.txt',
pipeline=train_pipeline

)

32 Chapter 5. Tutorial 3: Adding New Dataset

https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/cifar.py
https://github.com/open-mmlab/mmclassification/blob/master/mmcls/datasets/imagenet.py

MMClassification Documentation, Release 0.18.0

5.2 Customize datasets by mixing dataset

MMClassification also supports to mix dataset for training. Currently it supports to concat and repeat datasets.

5.2.1 Repeat dataset

We use RepeatDataset as wrapper to repeat the dataset. For example, suppose the original dataset is Dataset_A, to
repeat it, the config looks like the following

dataset_A_train = dict(
type='RepeatDataset',
times=N,
dataset=dict(# This is the original config of Dataset_A

type='Dataset_A',
...
pipeline=train_pipeline

)
)

5.2.2 Class balanced dataset

We use ClassBalancedDataset as wrapper to repeat the dataset based on category frequency. The dataset to repeat
needs to instantiate function self.get_cat_ids(idx) to support ClassBalancedDataset. For example, to repeat
Dataset_A with oversample_thr=1e-3, the config looks like the following

dataset_A_train = dict(
type='ClassBalancedDataset',
oversample_thr=1e-3,
dataset=dict(# This is the original config of Dataset_A

type='Dataset_A',
...
pipeline=train_pipeline

)
)

You may refer to source code for details.

5.2. Customize datasets by mixing dataset 33

https://github.com/open-mmlab/mmclassification/tree/master/mmcls/datasets/dataset_wrappers.py

MMClassification Documentation, Release 0.18.0

34 Chapter 5. Tutorial 3: Adding New Dataset

CHAPTER

SIX

TUTORIAL 4: CUSTOM DATA PIPELINES

6.1 Design of Data pipelines

Following typical conventions, we use Dataset and DataLoader for data loading with multiple workers. Indexing
Dataset returns a dict of data items corresponding to the arguments of models forward method.

The data preparation pipeline and the dataset is decomposed. Usually a dataset defines how to process the annotations
and a data pipeline defines all the steps to prepare a data dict. A pipeline consists of a sequence of operations. Each
operation takes a dict as input and also output a dict for the next transform.

The operations are categorized into data loading, pre-processing and formatting.

Here is an pipeline example for ResNet-50 training on ImageNet.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]
test_pipeline = [

dict(type='LoadImageFromFile'),
dict(type='Resize', size=256),
dict(type='CenterCrop', crop_size=224),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])

]

For each operation, we list the related dict fields that are added/updated/removed. At the end of the pipeline, we use
Collect to only retain the necessary items for forward computation.

35

MMClassification Documentation, Release 0.18.0

6.1.1 Data loading

LoadImageFromFile

• add: img, img_shape, ori_shape

By default, LoadImageFromFile loads images from disk but it may lead to IO bottleneck for efficient small models.
Various backends are supported by mmcv to accelerate this process. For example, if the training machines have setup
memcached, we can revise the config as follows.

memcached_root = '/mnt/xxx/memcached_client/'
train_pipeline = [

dict(
type='LoadImageFromFile',
file_client_args=dict(

backend='memcached',
server_list_cfg=osp.join(memcached_root, 'server_list.conf'),
client_cfg=osp.join(memcached_root, 'client.conf'))),

]

More supported backends can be found in mmcv.fileio.FileClient.

6.1.2 Pre-processing

Resize

• add: scale, scale_idx, pad_shape, scale_factor, keep_ratio

• update: img, img_shape

RandomFlip

• add: flip, flip_direction

• update: img

RandomCrop

• update: img, pad_shape

Normalize

• add: img_norm_cfg

• update: img

6.1.3 Formatting

ToTensor

• update: specified by keys.

ImageToTensor

• update: specified by keys.

Collect

• remove: all other keys except for those specified by keys

36 Chapter 6. Tutorial 4: Custom Data Pipelines

https://memcached.org/
https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py

MMClassification Documentation, Release 0.18.0

6.2 Extend and use custom pipelines

1. Write a new pipeline in any file, e.g., my_pipeline.py, and place it in the folder mmcls/datasets/
pipelines/. The pipeline class needs to override the __call__ method which takes a dict as input and returns
a dict.

from mmcls.datasets import PIPELINES

@PIPELINES.register_module()
class MyTransform(object):

def __call__(self, results):
apply transforms on results['img']
return results

2. Import the new class in mmcls/datasets/pipelines/__init__.py.

...
from .my_pipeline import MyTransform

__all__ = [
..., 'MyTransform'

]

3. Use it in config files.

img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)

train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='RandomResizedCrop', size=224),
dict(type='RandomFlip', flip_prob=0.5, direction='horizontal'),
dict(type='MyTransform'),
dict(type='Normalize', **img_norm_cfg),
dict(type='ImageToTensor', keys=['img']),
dict(type='ToTensor', keys=['gt_label']),
dict(type='Collect', keys=['img', 'gt_label'])

]

6.3 Pipeline visualization

After designing data pipelines, you can use the visualization tools to view the performance.

6.2. Extend and use custom pipelines 37

MMClassification Documentation, Release 0.18.0

38 Chapter 6. Tutorial 4: Custom Data Pipelines

CHAPTER

SEVEN

TUTORIAL 5: ADDING NEW MODULES

7.1 Develop new components

We basically categorize model components into 3 types.

• backbone: usually an feature extraction network, e.g., ResNet, MobileNet.

• neck: the component between backbones and heads, e.g., GlobalAveragePooling.

• head: the component for specific tasks, e.g., classification or regression.

7.1.1 Add new backbones

Here we show how to develop new components with an example of ResNet_CIFAR. As the input size of CIFAR
is 32x32, this backbone replaces the kernel_size=7, stride=2 to kernel_size=3, stride=1 and remove the
MaxPooling after stem, to avoid forwarding small feature maps to residual blocks. It inherits from ResNet and only
modifies the stem layers.

1. Create a new file mmcls/models/backbones/resnet_cifar.py.

import torch.nn as nn

from ..builder import BACKBONES
from .resnet import ResNet

@BACKBONES.register_module()
class ResNet_CIFAR(ResNet):

"""ResNet backbone for CIFAR.

short description of the backbone

Args:
depth(int): Network depth, from {18, 34, 50, 101, 152}.
...

"""

def __init__(self, depth, deep_stem, **kwargs):
call ResNet init
super(ResNet_CIFAR, self).__init__(depth, deep_stem=deep_stem, **kwargs)
other specific initialization

(continues on next page)

39

MMClassification Documentation, Release 0.18.0

(continued from previous page)

assert not self.deep_stem, 'ResNet_CIFAR do not support deep_stem'

def _make_stem_layer(self, in_channels, base_channels):
override ResNet method to modify the network structure
self.conv1 = build_conv_layer(

self.conv_cfg,
in_channels,
base_channels,
kernel_size=3,
stride=1,
padding=1,
bias=False)

self.norm1_name, norm1 = build_norm_layer(
self.norm_cfg, base_channels, postfix=1)

self.add_module(self.norm1_name, norm1)
self.relu = nn.ReLU(inplace=True)

def forward(self, x): # should return a tuple
pass # implementation is ignored

def init_weights(self, pretrained=None):
pass # override ResNet init_weights if necessary

def train(self, mode=True):
pass # override ResNet train if necessary

2. Import the module in mmcls/models/backbones/__init__.py.

...
from .resnet_cifar import ResNet_CIFAR

__all__ = [
..., 'ResNet_CIFAR'

]

3. Use it in your config file.

model = dict(
...
backbone=dict(

type='ResNet_CIFAR',
depth=18,
other_arg=xxx),

...

40 Chapter 7. Tutorial 5: Adding New Modules

MMClassification Documentation, Release 0.18.0

7.1.2 Add new necks

Here we take GlobalAveragePooling as an example. It is a very simple neck without any arguments. To add a new
neck, we mainly implement the forward function, which applies some operation on the output from backbone and
forward the results to head.

1. Create a new file in mmcls/models/necks/gap.py.

import torch.nn as nn

from ..builder import NECKS

@NECKS.register_module()
class GlobalAveragePooling(nn.Module):

def __init__(self):
self.gap = nn.AdaptiveAvgPool2d((1, 1))

def forward(self, inputs):
we regard inputs as tensor for simplicity
outs = self.gap(inputs)
outs = outs.view(inputs.size(0), -1)
return outs

2. Import the module in mmcls/models/necks/__init__.py.

...
from .gap import GlobalAveragePooling

__all__ = [
..., 'GlobalAveragePooling'

]

3. Modify the config file.

model = dict(
neck=dict(type='GlobalAveragePooling'),

)

7.1.3 Add new heads

Here we show how to develop a new head with the example of LinearClsHead as the following. To implement a new
head, basically we need to implement forward_train, which takes the feature maps from necks or backbones as input
and compute loss based on ground-truth labels.

1. Create a new file in mmcls/models/heads/linear_head.py.

from ..builder import HEADS
from .cls_head import ClsHead

@HEADS.register_module()
class LinearClsHead(ClsHead):

(continues on next page)

7.1. Develop new components 41

MMClassification Documentation, Release 0.18.0

(continued from previous page)

def __init__(self,
num_classes,
in_channels,
loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1,)):

super(LinearClsHead, self).__init__(loss=loss, topk=topk)
self.in_channels = in_channels
self.num_classes = num_classes

if self.num_classes <= 0:
raise ValueError(

f'num_classes={num_classes} must be a positive integer')

self._init_layers()

def _init_layers(self):
self.fc = nn.Linear(self.in_channels, self.num_classes)

def init_weights(self):
normal_init(self.fc, mean=0, std=0.01, bias=0)

def forward_train(self, x, gt_label):
cls_score = self.fc(x)
losses = self.loss(cls_score, gt_label)
return losses

2. Import the module in mmcls/models/heads/__init__.py.

...
from .linear_head import LinearClsHead

__all__ = [
..., 'LinearClsHead'

]

3. Modify the config file.

Together with the added GlobalAveragePooling neck, an entire config for a model is as follows.

model = dict(
type='ImageClassifier',
backbone=dict(

type='ResNet',
depth=50,
num_stages=4,
out_indices=(3,),
style='pytorch'),

neck=dict(type='GlobalAveragePooling'),
head=dict(

type='LinearClsHead',
num_classes=1000,
in_channels=2048,

(continues on next page)

42 Chapter 7. Tutorial 5: Adding New Modules

MMClassification Documentation, Release 0.18.0

(continued from previous page)

loss=dict(type='CrossEntropyLoss', loss_weight=1.0),
topk=(1, 5),

))

7.1.4 Add new loss

To add a new loss function, we mainly implement the forward function in the loss module. In addition, it is helpful
to leverage the decorator weighted_loss to weight the loss for each element. Assuming that we want to mimic a
probabilistic distribution generated from another classification model, we implement a L1Loss to fulfil the purpose as
below.

1. Create a new file in mmcls/models/losses/l1_loss.py.

import torch
import torch.nn as nn

from ..builder import LOSSES
from .utils import weighted_loss

@weighted_loss
def l1_loss(pred, target):

assert pred.size() == target.size() and target.numel() > 0
loss = torch.abs(pred - target)
return loss

@LOSSES.register_module()
class L1Loss(nn.Module):

def __init__(self, reduction='mean', loss_weight=1.0):
super(L1Loss, self).__init__()
self.reduction = reduction
self.loss_weight = loss_weight

def forward(self,
pred,
target,
weight=None,
avg_factor=None,
reduction_override=None):

assert reduction_override in (None, 'none', 'mean', 'sum')
reduction = (

reduction_override if reduction_override else self.reduction)
loss = self.loss_weight * l1_loss(

pred, target, weight, reduction=reduction, avg_factor=avg_factor)
return loss

2. Import the module in mmcls/models/losses/__init__.py.

...
from .l1_loss import L1Loss, l1_loss

(continues on next page)

7.1. Develop new components 43

MMClassification Documentation, Release 0.18.0

(continued from previous page)

__all__ = [
..., 'L1Loss', 'l1_loss'

]

3. Modify loss field in the config.

loss=dict(type='L1Loss', loss_weight=1.0))

44 Chapter 7. Tutorial 5: Adding New Modules

CHAPTER

EIGHT

TUTORIAL 6: CUSTOMIZE SCHEDULE

In this tutorial, we will introduce some methods about how to construct optimizers, customize learning rate and mo-
mentum schedules, parameter-wise finely configuration, gradient clipping, gradient accumulation, and customize self-
implemented methods for the project.

• Customize optimizer supported by PyTorch

• Customize learning rate schedules

– Learning rate decay

– Warmup strategy

• Customize momentum schedules

• Parameter-wise finely configuration

• Gradient clipping and gradient accumulation

– Gradient clipping

– Gradient accumulation

• Customize self-implemented methods

– Customize self-implemented optimizer

– Customize optimizer constructor

8.1 Customize optimizer supported by PyTorch

We already support to use all the optimizers implemented by PyTorch, and to use and modify them, please change the
optimizer field of config files.

For example, if you want to use SGD, the modification could be as the following.

optimizer = dict(type='SGD', lr=0.0003, weight_decay=0.0001)

To modify the learning rate of the model, just modify the lr in the config of optimizer. You can also directly set other
arguments according to the API doc of PyTorch.

For example, if you want to use Adam with the setting like torch.optim.Adam(params, lr=0.001, betas=(0.9,
0.999), eps=1e-08, weight_decay=0, amsgrad=False) in PyTorch, the config should looks like.

optimizer = dict(type='Adam', lr=0.001, betas=(0.9, 0.999), eps=1e-08, weight_decay=0,␣
→˓amsgrad=False)

45

https://pytorch.org/docs/stable/optim.html?highlight=optim#module-torch.optim

MMClassification Documentation, Release 0.18.0

8.2 Customize learning rate schedules

8.2.1 Learning rate decay

Learning rate decay is widely used to improve performance. And to use learning rate decay, please set the lr_confg
field in config files.

For example, we use step policy as the default learning rate decay policy of ResNet, and the config is:

lr_config = dict(policy='step', step=[100, 150])

Then during training, the program will call StepLRHook periodically to update the learning rate.

We also support many other learning rate schedules here, such as CosineAnnealing and Poly schedule. Here are
some examples

• ConsineAnnealing schedule:

lr_config = dict(
policy='CosineAnnealing',
warmup='linear',
warmup_iters=1000,
warmup_ratio=1.0 / 10,
min_lr_ratio=1e-5)

• Poly schedule:

lr_config = dict(policy='poly', power=0.9, min_lr=1e-4, by_epoch=False)

8.2.2 Warmup strategy

In the early stage, training is easy to be volatile, and warmup is a technique to reduce volatility. With warmup, the
learning rate will increase gradually from a minor value to the expected value.

In MMClassification, we use lr_config to configure the warmup strategy, the main parameters are as follows：

• warmup: The warmup curve type. Please choose one from ‘constant’, ‘linear’, ‘exp’ and None, and None means
disable warmup.

• warmup_by_epoch : if warmup by epoch or not, default to be True, if set to be False, warmup by iter.

• warmup_iters : the number of warm-up iterations, when warmup_by_epoch=True, the unit is epoch; when
warmup_by_epoch=False, the unit is the number of iterations (iter).

• warmup_ratio : warm-up initial learning rate will calculate as lr = lr * warmup_ratio。

Here are some examples

1. linear & warmup by iter

lr_config = dict(
policy='CosineAnnealing',
by_epoch=False,
min_lr_ratio=1e-2,
warmup='linear',
warmup_ratio=1e-3,

(continues on next page)

46 Chapter 8. Tutorial 6: Customize Schedule

https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L153
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/lr_updater.py

MMClassification Documentation, Release 0.18.0

(continued from previous page)

warmup_iters=20 * 1252,
warmup_by_epoch=False)

2. exp & warmup by epoch

lr_config = dict(
policy='CosineAnnealing',
min_lr=0,
warmup='exp',
warmup_iters=5,
warmup_ratio=0.1,
warmup_by_epoch=True)

Tip: After completing your configuration file，you could use learning rate visualization tool to draw the corresponding
learning rate adjustment curve.

8.3 Customize momentum schedules

We support the momentum scheduler to modify the model’s momentum according to learning rate, which could make
the model converge in a faster way.

Momentum scheduler is usually used with LR scheduler, for example, the following config is used to accelerate con-
vergence. For more details, please refer to the implementation of CyclicLrUpdater and CyclicMomentumUpdater.

Here is an example

lr_config = dict(
policy='cyclic',
target_ratio=(10, 1e-4),
cyclic_times=1,
step_ratio_up=0.4,

)
momentum_config = dict(

policy='cyclic',
target_ratio=(0.85 / 0.95, 1),
cyclic_times=1,
step_ratio_up=0.4,

)

8.4 Parameter-wise finely configuration

Some models may have some parameter-specific settings for optimization, for example, no weight decay to the Batch-
Norm layer or using different learning rates for different network layers. To finely configuration them, we can use the
paramwise_cfg option in optimizer.

We provide some examples here and more usages refer to DefaultOptimizerConstructor.

• Using specified options

8.3. Customize momentum schedules 47

https://mmclassification.readthedocs.io/en/latest/tools/visualization.html#learning-rate-schedule-visualization
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/lr_updater.py#L327
https://github.com/open-mmlab/mmcv/blob/f48241a65aebfe07db122e9db320c31b685dc674/mmcv/runner/hooks/momentum_updater.py#L130
https://mmcv.readthedocs.io/en/latest/_modules/mmcv/runner/optimizer/default_constructor.html#DefaultOptimizerConstructor

MMClassification Documentation, Release 0.18.0

The DefaultOptimizerConstructor provides options including bias_lr_mult, bias_decay_mult,
norm_decay_mult, dwconv_decay_mult, dcn_offset_lr_mult and bypass_duplicate to configure spe-
cial optimizer behaviors of bias, normalization, depth-wise convolution, deformable convolution and duplicated
parameter. E.g:

1. No weight decay to the BatchNorm layer

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
paramwise_cfg=dict(norm_decay_mult=0.))

• Using custom_keys dict

MMClassification can use custom_keys to specify different parameters to use different learning rates or weight
decays, for example:

1. No weight decay for specific parameters

paramwise_cfg = dict(
custom_keys={

'backbone.cls_token': dict(decay_mult=0.0),
'backbone.pos_embed': dict(decay_mult=0.0)

})

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
paramwise_cfg=paramwise_cfg)

2. Using a smaller learning rate and a weight decay for the backbone layers

optimizer = dict(
type='SGD',
lr=0.8,
weight_decay=1e-4,
'lr' for backbone and 'weight_decay' are 0.1 * lr and 0.9 * weight_decay
paramwise_cfg=dict(

custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=0.9)}))

48 Chapter 8. Tutorial 6: Customize Schedule

MMClassification Documentation, Release 0.18.0

8.5 Gradient clipping and gradient accumulation

Besides the basic function of PyTorch optimizers, we also provide some enhancement functions, such as gradient
clipping, gradient accumulation, etc., refer to MMCV.

8.5.1 Gradient clipping

During the training process, the loss function may get close to a cliffy region and cause gradient explosion. And gradient
clipping is helpful to stabilize the training process. More introduction can be found in this page.

Currently we support grad_clip option in optimizer_config, and the arguments refer to PyTorch Documentation.

Here is an example:

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
norm_type: type of the used p-norm, here norm_type is 2.

When inheriting from base and modifying configs, if grad_clip=None in base, _delete_=True is needed. For more
details about _delete_ you can refer to TUTORIAL 1: LEARN ABOUT CONFIGS. For example,

base = [./_base_/schedules/imagenet_bs256_coslr.py]

optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2), _delete_=True, type=
→˓'OptimizerHook')
you can ignore type if type is 'OptimizerHook', otherwise you must add "type=
→˓'xxxxxOptimizerHook'" here

8.5.2 Gradient accumulation

When computing resources are lacking, the batch size can only be set to a small value, which may affect the performance
of models. Gradient accumulation can be used to solve this problem.

Here is an example:

data = dict(samples_per_gpu=64)
optimizer_config = dict(type="GradientCumulativeOptimizerHook", cumulative_iters=4)

Indicates that during training, back-propagation is performed every 4 iters. And the above is equivalent to:

data = dict(samples_per_gpu=256)
optimizer_config = dict(type="OptimizerHook")

Note: When the optimizer hook type is not specified in optimizer_config, OptimizerHook is used by default.

8.5. Gradient clipping and gradient accumulation 49

https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/optimizer.py
https://paperswithcode.com/method/gradient-clipping
https://pytorch.org/docs/stable/generated/torch.nn.utils.clip_grad_norm_.html
https://mmclassification.readthedocs.io/en/latest/tutorials/config.html#ignore-some-fields-in-the-base-configs

MMClassification Documentation, Release 0.18.0

8.6 Customize self-implemented methods

In academic research and industrial practice, it may be necessary to use optimization methods not implemented by
MMClassification, and you can add them through the following methods.

Note: This part will modify the MMClassification source code or add code to the MMClassification framework,
beginners can skip it.

8.6.1 Customize self-implemented optimizer

1. Define a new optimizer

A customized optimizer could be defined as below.

Assume you want to add an optimizer named MyOptimizer, which has arguments a, b, and c. You need to create
a new directory named mmcls/core/optimizer. And then implement the new optimizer in a file, e.g., in mmcls/
core/optimizer/my_optimizer.py:

from mmcv.runner import OPTIMIZERS
from torch.optim import Optimizer

@OPTIMIZERS.register_module()
class MyOptimizer(Optimizer):

def __init__(self, a, b, c):

2. Add the optimizer to registry

To find the above module defined above, this module should be imported into the main namespace at first. There are
two ways to achieve it.

• Modify mmcls/core/optimizer/__init__.py to import it into optimizer package, and then modify
mmcls/core/__init__.py to import the new optimizer package.

Create the mmcls/core/optimizer folder and the mmcls/core/optimizer/__init__.py file if they don’t
exist. The newly defined module should be imported in mmcls/core/optimizer/__init__.py and mmcls/
core/__init__.py so that the registry will find the new module and add it:

In mmcls/core/optimizer/__init__.py
from .my_optimizer import MyOptimizer # MyOptimizer maybe other class name

__all__ = ['MyOptimizer']

In mmcls/core/__init__.py
...
from .optimizer import * # noqa: F401, F403

• Use custom_imports in the config to manually import it

50 Chapter 8. Tutorial 6: Customize Schedule

MMClassification Documentation, Release 0.18.0

custom_imports = dict(imports=['mmcls.core.optimizer.my_optimizer'], allow_failed_
→˓imports=False)

The module mmcls.core.optimizer.my_optimizer will be imported at the beginning of the program and the class
MyOptimizer is then automatically registered. Note that only the package containing the class MyOptimizer should
be imported. mmcls.core.optimizer.my_optimizer.MyOptimizer cannot be imported directly.

3. Specify the optimizer in the config file

Then you can use MyOptimizer in optimizer field of config files. In the configs, the optimizers are defined by the
field optimizer like the following:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

To use your own optimizer, the field can be changed to

optimizer = dict(type='MyOptimizer', a=a_value, b=b_value, c=c_value)

8.6.2 Customize optimizer constructor

Some models may have some parameter-specific settings for optimization, e.g. weight decay for BatchNorm layers.

Although our DefaultOptimizerConstructor is powerful, it may still not cover your need. If that, you can do those
fine-grained parameter tuning through customizing optimizer constructor.

from mmcv.runner.optimizer import OPTIMIZER_BUILDERS

@OPTIMIZER_BUILDERS.register_module()
class MyOptimizerConstructor:

def __init__(self, optimizer_cfg, paramwise_cfg=None):
pass

def __call__(self, model):
... # Construct your optimzier here.
return my_optimizer

The default optimizer constructor is implemented here, which could also serve as a template for new optimizer con-
structor.

8.6. Customize self-implemented methods 51

https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/optimizer/default_constructor.py#L11

MMClassification Documentation, Release 0.18.0

52 Chapter 8. Tutorial 6: Customize Schedule

CHAPTER

NINE

TUTORIAL 7: CUSTOMIZE RUNTIME SETTINGS

In this tutorial, we will introduce some methods about how to customize workflow and hooks when running your own
settings for the project.

• Customize Workflow

• Hooks

– Default training hooks

∗ CheckpointHook

∗ LoggerHooks

∗ EvalHook

– Use other implemented hooks

– Customize self-implemented hooks

∗ 1. Implement a new hook

∗ 2. Register the new hook

∗ 3. Modify the config

• FAQ

9.1 Customize Workflow

Workflow is a list of (phase, duration) to specify the running order and duration. The meaning of “duration” depends
on the runner’s type.

For example, we use epoch-based runner by default, and the “duration” means how many epochs the phase to be
executed in a cycle. Usually, we only want to execute training phase, just use the following config.

workflow = [('train', 1)]

Sometimes we may want to check some metrics (e.g. loss, accuracy) about the model on the validate set. In such case,
we can set the workflow as

[('train', 1), ('val', 1)]

so that 1 epoch for training and 1 epoch for validation will be run iteratively.

By default, we recommend using EvalHook to do evaluation after the training epoch, but you can still use valworkflow
as an alternative.

53

MMClassification Documentation, Release 0.18.0

Note:

1. The parameters of model will not be updated during the val epoch.

2. Keyword max_epochs in the config only controls the number of training epochs and will not affect the validation
workflow.

3. Workflows [('train', 1), ('val', 1)] and [('train', 1)] will not change the behavior of EvalHook
because EvalHook is called by after_train_epoch and validation workflow only affect hooks that are called
through after_val_epoch. Therefore, the only difference between [('train', 1), ('val', 1)] and
[('train', 1)] is that the runner will calculate losses on the validation set after each training epoch.

9.2 Hooks

The hook mechanism is widely used in the OpenMMLab open-source algorithm library. Combined with the Runner,
the entire life cycle of the training process can be managed easily. You can learn more about the hook through related
article.

Hooks only work after being registered into the runner. At present, hooks are mainly divided into two categories:

• default training hooks

The default training hooks are registered by the runner by default. Generally, they are hooks for some basic functions,
and have a certain priority, you don’t need to modify the priority.

• custom hooks

The custom hooks are registered through custom_hooks. Generally, they are hooks with enhanced functions. The
priority needs to be specified in the configuration file. If you do not specify the priority of the hook, it will be set to
‘NORMAL’ by default.

Priority list

The priority determines the execution order of the hooks. Before training, the log will print out the execution order of
the hooks at each stage to facilitate debugging.

9.2.1 default training hooks

Some common hooks are not registered through custom_hooks, they are

OptimizerHook, MomentumUpdaterHook and LrUpdaterHook have been introduced in sehedule strategy.
IterTimerHook is used to record elapsed time and does not support modification.

Here we reveal how to customize CheckpointHook, LoggerHooks, and EvalHook.

54 Chapter 9. Tutorial 7: Customize Runtime Settings

https://www.calltutors.com/blog/what-is-hook/
https://www.calltutors.com/blog/what-is-hook/

MMClassification Documentation, Release 0.18.0

CheckpointHook

The MMCV runner will use checkpoint_config to initialize CheckpointHook.

checkpoint_config = dict(interval=1)

We could set max_keep_ckpts to save only a small number of checkpoints or decide whether to store state dict of
optimizer by save_optimizer. More details of the arguments are here

LoggerHooks

The log_config wraps multiple logger hooks and enables to set intervals. Now MMCV supports
TextLoggerHook, WandbLoggerHook, MlflowLoggerHook, NeptuneLoggerHook, DvcliveLoggerHook and
TensorboardLoggerHook. The detailed usages can be found in the doc.

log_config = dict(
interval=50,
hooks=[

dict(type='TextLoggerHook'),
dict(type='TensorboardLoggerHook')

])

EvalHook

The config of evaluation will be used to initialize the EvalHook.

The EvalHook has some reserved keys, such as interval, save_best and start, and the other arguments such as
metrics will be passed to the dataset.evaluate()

evaluation = dict(interval=1, metric='accuracy', metric_options={'topk': (1,)})

You can save the model weight when the best verification result is obtained by modifying the parameter save_best:

"auto" means automatically select the metrics to compare.
You can also use a specific key like "accuracy_top-1".
evaluation = dict(interval=1, save_best="auto", metric='accuracy', metric_options={'topk
→˓': (1,)})

When running some large experiments, you can skip the validation step at the beginning of training by modifying the
parameter start as below:

evaluation = dict(interval=1, start=200, metric='accuracy', metric_options={'topk': (1,␣
→˓)})

This indicates that, before the 200th epoch, evaluations would not be executed. Since the 200th epoch, evaluations
would be executed after the training process.

Note: In the default configuration files of MMClassification, the evaluation field is generally placed in the datasets
configs.

9.2. Hooks 55

https://github.com/open-mmlab/mmcv/blob/9ecd6b0d5ff9d2172c49a182eaa669e9f27bb8e7/mmcv/runner/hooks/checkpoint.py
https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.CheckpointHook
https://mmcv.readthedocs.io/en/latest/api.html#mmcv.runner.LoggerHook
https://github.com/open-mmlab/mmclassification/blob/master/mmcls/core/evaluation/eval_hooks.py

MMClassification Documentation, Release 0.18.0

9.2.2 Use other implemented hooks

Some hooks have been already implemented in MMCV and MMClassification, they are:

• EMAHook

• SyncBuffersHook

• EmptyCacheHook

• ProfilerHook

•

If the hook is already implemented in MMCV, you can directly modify the config to use the hook as below

mmcv_hooks = [
dict(type='MMCVHook', a=a_value, b=b_value, priority='NORMAL')

]

such as using EMAHook, interval is 100 iters:

custom_hooks = [
dict(type='EMAHook', interval=100, priority='HIGH')

]

9.3 Customize self-implemented hooks

9.3.1 1. Implement a new hook

Here we give an example of creating a new hook in MMClassification and using it in training.

from mmcv.runner import HOOKS, Hook

@HOOKS.register_module()
class MyHook(Hook):

def __init__(self, a, b):
pass

def before_run(self, runner):
pass

def after_run(self, runner):
pass

def before_epoch(self, runner):
pass

def after_epoch(self, runner):
pass

def before_iter(self, runner):
(continues on next page)

56 Chapter 9. Tutorial 7: Customize Runtime Settings

https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/ema.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/sync_buffer.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/memory.py
https://github.com/open-mmlab/mmcv/blob/master/mmcv/runner/hooks/profiler.py

MMClassification Documentation, Release 0.18.0

(continued from previous page)

pass

def after_iter(self, runner):
pass

Depending on the functionality of the hook, the users need to specify what the hook will do at each stage of the training
in before_run, after_run, before_epoch, after_epoch, before_iter, and after_iter.

9.3.2 2. Register the new hook

Then we need to make MyHook imported. Assuming the file is in mmcls/core/utils/my_hook.py there are two
ways to do that:

• Modify mmcls/core/utils/__init__.py to import it.

The newly defined module should be imported in mmcls/core/utils/__init__.py so that the registry will
find the new module and add it:

from .my_hook import MyHook

• Use custom_imports in the config to manually import it

custom_imports = dict(imports=['mmcls.core.utils.my_hook'], allow_failed_imports=False)

9.3.3 3. Modify the config

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value)

]

You can also set the priority of the hook as below:

custom_hooks = [
dict(type='MyHook', a=a_value, b=b_value, priority='ABOVE_NORMAL')

]

By default, the hook’s priority is set as NORMAL during registration.

9.4 FAQ

9.4.1 1. resume_from and load_from and init_cfg.Pretrained

• load_from : only imports model weights, which is mainly used to load pre-trained or trained models;

• resume_from : not only import model weights, but also optimizer information, current epoch information,
mainly used to continue training from the checkpoint.

• init_cfg.Pretrained : Load weights during weight initialization, and you can specify which module to load.
This is usually used when fine-tuning a model, refer to Tutorial 2: Fine-tune Models.

9.4. FAQ 57

MMClassification Documentation, Release 0.18.0

58 Chapter 9. Tutorial 7: Customize Runtime Settings

CHAPTER

TEN

MODEL ZOO SUMMARY

• Number of papers: 16

– ALGORITHM: 16

• Number of checkpoints: 80

– [ALGORITHM] MLP-Mixer: An all-MLP Architecture for Vision (2 ckpts)

– [ALGORITHM] MobileNetV2: Inverted Residuals and Linear Bottlenecks (1 ckpts)

– [ALGORITHM] Searching for MobileNetV3 (2 ckpts)

– [ALGORITHM] Designing Network Design Spaces (8 ckpts)

– [ALGORITHM] Repvgg: Making vgg-style convnets great again (12 ckpts)

– [ALGORITHM] Res2Net: A New Multi-scale Backbone Architecture (3 ckpts)

– [ALGORITHM] Deep Residual Learning for Image Recognition (15 ckpts)

– [ALGORITHM] Aggregated Residual Transformations for Deep Neural Networks (4 ckpts)

– [ALGORITHM] Squeeze-and-Excitation Networks (2 ckpts)

– [ALGORITHM] ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices (1
ckpts)

– [ALGORITHM] Shufflenet v2: Practical guidelines for efficient cnn architecture design (1 ckpts)

– [ALGORITHM] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows (11 ckpts)

– [ALGORITHM] Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet (3 ckpts)

– [ALGORITHM] Transformer in Transformer (1 ckpts)

– [ALGORITHM] Very Deep Convolutional Networks for Large-Scale Image Recognition (8 ckpts)

– [ALGORITHM] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (6 ckpts)

59

MMClassification Documentation, Release 0.18.0

60 Chapter 10. Model Zoo Summary

CHAPTER

ELEVEN

MODEL ZOO

11.1 ImageNet

ImageNet has multiple versions, but the most commonly used one is ILSVRC 2012. The ResNet family models below
are trained by standard data augmentations, i.e., RandomResizedCrop, RandomHorizontalFlip and Normalize.

Models with * are converted from other repos, others are trained by ourselves.

11.2 CIFAR10

61

http://www.image-net.org/challenges/LSVRC/2012/

MMClassification Documentation, Release 0.18.0

62 Chapter 11. Model Zoo

CHAPTER

TWELVE

MLP-MIXER: AN ALL-MLP ARCHITECTURE FOR VISION

12.1 Abstract

Convolutional Neural Networks (CNNs) are the go-to model for computer vision. Recently, attention-based networks,
such as the Vision Transformer, have also become popular. In this paper we show that while convolutions and attention
are both sufficient for good performance, neither of them are necessary. We present MLP-Mixer, an architecture based
exclusively on multi-layer perceptrons (MLPs). MLP-Mixer contains two types of layers: one with MLPs applied
independently to image patches (i.e. “mixing” the per-location features), and one with MLPs applied across patches
(i.e. “mixing” spatial information). When trained on large datasets, or with modern regularization schemes, MLP-
Mixer attains competitive scores on image classification benchmarks, with pre-training and inference cost comparable
to state-of-the-art models. We hope that these results spark further research beyond the realms of well established
CNNs and Transformers.

12.2 Citation

@misc{tolstikhin2021mlpmixer,
title={MLP-Mixer: An all-MLP Architecture for Vision},
author={Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer␣

→˓and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Andreas Steiner and␣
→˓Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},

year={2021},
eprint={2105.01601},
archivePrefix={arXiv},
primaryClass={cs.CV}

}

12.3 Pretrain model

The pre-trained modles are converted from timm.

63

https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/mlp_mixer.py

MMClassification Documentation, Release 0.18.0

12.3.1 ImageNet-1k

Models with * are converted from other repos.

64 Chapter 12. MLP-Mixer: An all-MLP Architecture for Vision

CHAPTER

THIRTEEN

MOBILENETV2: INVERTED RESIDUALS AND LINEAR
BOTTLENECKS

13.1 Abstract

In this paper we describe a new mobile architecture, MobileNetV2, that improves the state of the art performance of
mobile models on multiple tasks and benchmarks as well as across a spectrum of different model sizes. We also describe
efficient ways of applying these mobile models to object detection in a novel framework we call SSDLite. Additionally,
we demonstrate how to build mobile semantic segmentation models through a reduced form of DeepLabv3 which we
call Mobile DeepLabv3.

The MobileNetV2 architecture is based on an inverted residual structure where the input and output of the residual
block are thin bottleneck layers opposite to traditional residual models which use expanded representations in the input
an MobileNetV2 uses lightweight depthwise convolutions to filter features in the intermediate expansion layer. Addi-
tionally, we find that it is important to remove non-linearities in the narrow layers in order to maintain representational
power. We demonstrate that this improves performance and provide an intuition that led to this design. Finally, our
approach allows decoupling of the input/output domains from the expressiveness of the transformation, which provides
a convenient framework for further analysis. We measure our performance on Imagenet classification, COCO object
detection, VOC image segmentation. We evaluate the trade-offs between accuracy, and number of operations measured
by multiply-adds (MAdd), as well as the number of parameters

13.2 Citation

@INPROCEEDINGS{8578572,
author={M. {Sandler} and A. {Howard} and M. {Zhu} and A. {Zhmoginov} and L. {Chen}},
booktitle={2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition},
title={MobileNetV2: Inverted Residuals and Linear Bottlenecks},
year={2018},
volume={},
number={},
pages={4510-4520},
doi={10.1109/CVPR.2018.00474}}

}

65

MMClassification Documentation, Release 0.18.0

13.3 Results and models

13.3.1 ImageNet

66 Chapter 13. MobileNetV2: Inverted Residuals and Linear Bottlenecks

CHAPTER

FOURTEEN

SEARCHING FOR MOBILENETV3

14.1 Abstract

We present the next generation of MobileNets based on a combination of complementary search techniques as well as
a novel architecture design. MobileNetV3 is tuned to mobile phone CPUs through a combination of hardware-aware
network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through
novel architecture advances. This paper starts the exploration of how automated search algorithms and network design
can work together to harness complementary approaches improving the overall state of the art. Through this process
we create two new MobileNet models for release: MobileNetV3-Large and MobileNetV3-Small which are targeted
for high and low resource use cases. These models are then adapted and applied to the tasks of object detection and
semantic segmentation. For the task of semantic segmentation (or any dense pixel prediction), we propose a new
efficient segmentation decoder Lite Reduced Atrous Spatial Pyramid Pooling (LR-ASPP). We achieve new state of
the art results for mobile classification, detection and segmentation. MobileNetV3-Large is 3.2% more accurate on
ImageNet classification while reducing latency by 15% compared to MobileNetV2. MobileNetV3-Small is 4.6% more
accurate while reducing latency by 5% compared to MobileNetV2. MobileNetV3-Large detection is 25% faster at
roughly the same accuracy as MobileNetV2 on COCO detection. MobileNetV3-Large LR-ASPP is 30% faster than
MobileNetV2 R-ASPP at similar accuracy for Cityscapes segmentation.

14.2 Citation

@inproceedings{Howard_2019_ICCV,
author = {Howard, Andrew and Sandler, Mark and Chu, Grace and Chen, Liang-Chieh and␣

→˓Chen, Bo and Tan, Mingxing and Wang, Weijun and Zhu, Yukun and Pang, Ruoming and␣
→˓Vasudevan, Vijay and Le, Quoc V. and Adam, Hartwig},

title = {Searching for MobileNetV3},
booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision␣

→˓(ICCV)},
month = {October},
year = {2019}

}

67

MMClassification Documentation, Release 0.18.0

14.3 Pretrain model

The pre-trained modles are converted from torchvision.

14.3.1 ImageNet

14.4 Results and models

Waiting for adding.

68 Chapter 14. Searching for MobileNetV3

https://pytorch.org/vision/stable/_modules/torchvision/models/mobilenetv3.html

CHAPTER

FIFTEEN

DESIGNING NETWORK DESIGN SPACES

15.1 Abstract

In this work, we present a new network design paradigm. Our goal is to help advance the understanding of network
design and discover design principles that generalize across settings. Instead of focusing on designing individual
network instances, we design network design spaces that parametrize populations of networks. The overall process
is analogous to classic manual design of networks, but elevated to the design space level. Using our methodology we
explore the structure aspect of network design and arrive at a low-dimensional design space consisting of simple, regular
networks that we call RegNet. The core insight of the RegNet parametrization is surprisingly simple: widths and depths
of good networks can be explained by a quantized linear function. We analyze the RegNet design space and arrive at
interesting findings that do not match the current practice of network design. The RegNet design space provides simple
and fast networks that work well across a wide range of flop regimes. Under comparable training settings and flops,
the RegNet models outperform the popular EfficientNet models while being up to 5x faster on GPUs.

15.2 Citation

@article{radosavovic2020designing,
title={Designing Network Design Spaces},
author={Ilija Radosavovic and Raj Prateek Kosaraju and Ross Girshick and Kaiming He␣

→˓and Piotr Dollár},
year={2020},
eprint={2003.13678},
archivePrefix={arXiv},
primaryClass={cs.CV}

}

15.3 Pretrain model

The pre-trained modles are converted from model zoo of pycls.

69

https://github.com/facebookresearch/pycls/blob/master/MODEL_ZOO.md

MMClassification Documentation, Release 0.18.0

15.3.1 ImageNet

15.4 Results and models

Waiting for adding.

70 Chapter 15. Designing Network Design Spaces

CHAPTER

SIXTEEN

REPVGG: MAKING VGG-STYLE CONVNETS GREAT AGAIN

16.1 Abstract

We present a simple but powerful architecture of convolutional neural network, which has a VGG-like inference-time
body composed of nothing but a stack of 3x3 convolution and ReLU, while the training-time model has a multi-
branch topology. Such decoupling of the training-time and inference-time architecture is realized by a structural re-
parameterization technique so that the model is named RepVGG. On ImageNet, RepVGG reaches over 80% top-1
accuracy, which is the first time for a plain model, to the best of our knowledge. On NVIDIA 1080Ti GPU, RepVGG
models run 83% faster than ResNet-50 or 101% faster than ResNet-101 with higher accuracy and show favorable
accuracy-speed trade-off compared to the state-of-the-art models like EfficientNet and RegNet.

16.2 Citation

@inproceedings{ding2021repvgg,
title={Repvgg: Making vgg-style convnets great again},
author={Ding, Xiaohan and Zhang, Xiangyu and Ma, Ningning and Han, Jungong and Ding,␣

→˓Guiguang and Sun, Jian},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern␣

→˓Recognition},
pages={13733--13742},
year={2021}

}

71

MMClassification Documentation, Release 0.18.0

16.3 Pretrain model

Models with * are converted from other repos.

16.4 Reparameterize RepVGG

The checkpoints provided are all in train form. Use the reparameterize tool to switch them to more efficient deploy
form, which not only has fewer parameters but also less calculations.

python ./tools/convert_models/reparameterize_repvgg.py ${CFG_PATH} ${SRC_CKPT_PATH} $
→˓{TARGET_CKPT_PATH}

${CFG_PATH} is the config file, ${SRC_CKPT_PATH} is the source chenpoint file, ${TARGET_CKPT_PATH} is the target
deploy weight file path.

To use reparameterized repvgg weight, the config file must switch to the deploy config files as below:

python ./tools/test.py ${RapVGG_Deploy_CFG} ${CHECK_POINT}

72 Chapter 16. Repvgg: Making vgg-style convnets great again

https://github.com/open-mmlab/mmclassification/blob/master/docs/../configs/repvgg/deploy

CHAPTER

SEVENTEEN

RES2NET: A NEW MULTI-SCALE BACKBONE ARCHITECTURE

17.1 Abstract

Representing features at multiple scales is of great importance for numerous vision tasks. Recent advances in backbone
convolutional neural networks (CNNs) continually demonstrate stronger multi-scale representation ability, leading to
consistent performance gains on a wide range of applications. However, most existing methods represent the multi-
scale features in a layer-wise manner. In this paper, we propose a novel building block for CNNs, namely Res2Net,
by constructing hierarchical residual-like connections within one single residual block. The Res2Net represents multi-
scale features at a granular level and increases the range of receptive fields for each network layer. The proposed Res2Net
block can be plugged into the state-of-the-art backbone CNN models, e.g., ResNet, ResNeXt, and DLA. We evaluate the
Res2Net block on all these models and demonstrate consistent performance gains over baseline models on widely-used
datasets, e.g., CIFAR-100 and ImageNet. Further ablation studies and experimental results on representative computer
vision tasks, i.e., object detection, class activation mapping, and salient object detection, further verify the superiority
of the Res2Net over the state-of-the-art baseline methods.

17.2 Citation

@article{gao2019res2net,
title={Res2Net: A New Multi-scale Backbone Architecture},
author={Gao, Shang-Hua and Cheng, Ming-Ming and Zhao, Kai and Zhang, Xin-Yu and Yang,␣

→˓Ming-Hsuan and Torr, Philip},
journal={IEEE TPAMI},
year={2021},
doi={10.1109/TPAMI.2019.2938758},

}

17.3 Pretrain model

The pre-trained models are converted from official repo.

73

https://github.com/Res2Net/Res2Net-PretrainedModels

MMClassification Documentation, Release 0.18.0

17.3.1 ImageNet 1k

Models with * are converted from other repos.

74 Chapter 17. Res2Net: A New Multi-scale Backbone Architecture

CHAPTER

EIGHTEEN

DEEP RESIDUAL LEARNING FOR IMAGE RECOGNITION

18.1 Abstract

Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of net-
works that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual
functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive em-
pirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably
increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8x deeper than
VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet
test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10
with 100 and 1000 layers.

The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely
deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets
are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the
tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

18.2 Citation

@inproceedings{he2016deep,
title={Deep residual learning for image recognition},
author={He, Kaiming and Zhang, Xiangyu and Ren, Shaoqing and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern␣

→˓recognition},
pages={770--778},
year={2016}

}

18.3 Results and models

18.4 Cifar10

18.5 Cifar100

18.5.1 ImageNet

75

MMClassification Documentation, Release 0.18.0

76 Chapter 18. Deep Residual Learning for Image Recognition

CHAPTER

NINETEEN

AGGREGATED RESIDUAL TRANSFORMATIONS FOR DEEP NEURAL
NETWORKS

19.1 Abstract

We present a simple, highly modularized network architecture for image classification. Our network is constructed by
repeating a building block that aggregates a set of transformations with the same topology. Our simple design results
in a homogeneous, multi-branch architecture that has only a few hyper-parameters to set. This strategy exposes a new
dimension, which we call “cardinality” (the size of the set of transformations), as an essential factor in addition to the
dimensions of depth and width. On the ImageNet-1K dataset, we empirically show that even under the restricted condi-
tion of maintaining complexity, increasing cardinality is able to improve classification accuracy. Moreover, increasing
cardinality is more effective than going deeper or wider when we increase the capacity. Our models, named ResNeXt,
are the foundations of our entry to the ILSVRC 2016 classification task in which we secured 2nd place. We further
investigate ResNeXt on an ImageNet-5K set and the COCO detection set, also showing better results than its ResNet
counterpart. The code and models are publicly available online.

19.2 Citation

@inproceedings{xie2017aggregated,
title={Aggregated residual transformations for deep neural networks},
author={Xie, Saining and Girshick, Ross and Doll{\'a}r, Piotr and Tu, Zhuowen and He,␣

→˓Kaiming},
booktitle={Proceedings of the IEEE conference on computer vision and pattern␣

→˓recognition},
pages={1492--1500},
year={2017}

}

19.3 Results and models

19.3.1 ImageNet

77

MMClassification Documentation, Release 0.18.0

78 Chapter 19. Aggregated Residual Transformations for Deep Neural Networks

CHAPTER

TWENTY

SQUEEZE-AND-EXCITATION NETWORKS

20.1 Abstract

The central building block of convolutional neural networks (CNNs) is the convolution operator, which enables net-
works to construct informative features by fusing both spatial and channel-wise information within local receptive fields
at each layer. A broad range of prior research has investigated the spatial component of this relationship, seeking to
strengthen the representational power of a CNN by enhancing the quality of spatial encodings throughout its feature
hierarchy. In this work, we focus instead on the channel relationship and propose a novel architectural unit, which we
term the “Squeeze-and-Excitation” (SE) block, that adaptively recalibrates channel-wise feature responses by explic-
itly modelling interdependencies between channels. We show that these blocks can be stacked together to form SENet
architectures that generalise extremely effectively across different datasets. We further demonstrate that SE blocks
bring significant improvements in performance for existing state-of-the-art CNNs at slight additional computational
cost. Squeeze-and-Excitation Networks formed the foundation of our ILSVRC 2017 classification submission which
won first place and reduced the top-5 error to 2.251%, surpassing the winning entry of 2016 by a relative improvement
of ~25%.

20.2 Citation

@inproceedings{hu2018squeeze,
title={Squeeze-and-excitation networks},
author={Hu, Jie and Shen, Li and Sun, Gang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern␣

→˓recognition},
pages={7132--7141},
year={2018}

}

20.3 Results and models

20.3.1 ImageNet

79

MMClassification Documentation, Release 0.18.0

80 Chapter 20. Squeeze-and-Excitation Networks

CHAPTER

TWENTYONE

SHUFFLENET: AN EXTREMELY EFFICIENT CONVOLUTIONAL
NEURAL NETWORK FOR MOBILE DEVICES

21.1 Abstract

We introduce an extremely computation-efficient CNN architecture named ShuffleNet, which is designed specially for
mobile devices with very limited computing power (e.g., 10-150 MFLOPs). The new architecture utilizes two new
operations, pointwise group convolution and channel shuffle, to greatly reduce computation cost while maintaining ac-
curacy. Experiments on ImageNet classification and MS COCO object detection demonstrate the superior performance
of ShuffleNet over other structures, e.g. lower top-1 error (absolute 7.8%) than recent MobileNet on ImageNet clas-
sification task, under the computation budget of 40 MFLOPs. On an ARM-based mobile device, ShuffleNet achieves
~13x actual speedup over AlexNet while maintaining comparable accuracy.

21.2 Citation

@inproceedings{zhang2018shufflenet,
title={Shufflenet: An extremely efficient convolutional neural network for mobile␣

→˓devices},
author={Zhang, Xiangyu and Zhou, Xinyu and Lin, Mengxiao and Sun, Jian},
booktitle={Proceedings of the IEEE conference on computer vision and pattern␣

→˓recognition},
pages={6848--6856},
year={2018}

}

21.3 Results and models

21.3.1 ImageNet

81

MMClassification Documentation, Release 0.18.0

82Chapter 21. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices

CHAPTER

TWENTYTWO

SHUFFLENET V2: PRACTICAL GUIDELINES FOR EFFICIENT CNN
ARCHITECTURE DESIGN

22.1 Abstract

Currently, the neural network architecture design is mostly guided by the indirect metric of computation complexity,
i.e., FLOPs. However, the direct metric, e.g., speed, also depends on the other factors such as memory access cost
and platform characterics. Thus, this work proposes to evaluate the direct metric on the target platform, beyond only
considering FLOPs. Based on a series of controlled experiments, this work derives several practical guidelines for
efficient network design. Accordingly, a new architecture is presented, called ShuffleNet V2. Comprehensive ablation
experiments verify that our model is the state-of-the-art in terms of speed and accuracy tradeoff.

22.2 Citation

@inproceedings{ma2018shufflenet,
title={Shufflenet v2: Practical guidelines for efficient cnn architecture design},
author={Ma, Ningning and Zhang, Xiangyu and Zheng, Hai-Tao and Sun, Jian},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={116--131},
year={2018}

}

22.3 Results and models

22.3.1 ImageNet

83

MMClassification Documentation, Release 0.18.0

84 Chapter 22. Shufflenet v2: Practical guidelines for efficient cnn architecture design

CHAPTER

TWENTYTHREE

SWIN TRANSFORMER: HIERARCHICAL VISION TRANSFORMER
USING SHIFTED WINDOWS

23.1 Abstract

This paper presents a new vision Transformer, called Swin Transformer, that capably serves as a general-purpose back-
bone for computer vision. Challenges in adapting Transformer from language to vision arise from differences between
the two domains, such as large variations in the scale of visual entities and the high resolution of pixels in images
compared to words in text. To address these differences, we propose a hierarchical Transformer whose representation
is computed with Shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention
computation to non-overlapping local windows while also allowing for cross-window connection. This hierarchical
architecture has the flexibility to model at various scales and has linear computational complexity with respect to im-
age size. These qualities of Swin Transformer make it compatible with a broad range of vision tasks, including image
classification (87.3 top-1 accuracy on ImageNet-1K) and dense prediction tasks such as object detection (58.7 box
AP and 51.1 mask AP on COCO test-dev) and semantic segmentation (53.5 mIoU on ADE20K val). Its performance
surpasses the previous state-of-the-art by a large margin of +2.7 box AP and +2.6 mask AP on COCO, and +3.2 mIoU
on ADE20K, demonstrating the potential of Transformer-based models as vision backbones. The hierarchical design
and the shifted window approach also prove beneficial for all-MLP architectures.

23.2 Citation

@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang,␣

→˓Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}

}

85

MMClassification Documentation, Release 0.18.0

23.3 Pretrain model

The pre-trained modles are converted from model zoo of Swin Transformer.

23.3.1 ImageNet 1k

23.4 Results and models

23.4.1 ImageNet 1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

Swin-
T

ImageNet-
1k

224x224 28.29 4.36 81.18 95.61 config model |
log

Swin-S ImageNet-
1k

224x224 49.61 8.52 83.02 96.29 config model |
log

Swin-
B

ImageNet-
1k

224x224 87.77 15.14 83.36 96.44 config model |
log

86 Chapter 23. Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

https://github.com/microsoft/Swin-Transformer#main-results-on-imagenet-with-pretrained-models
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-tiny_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925-66df6be6.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_tiny_224_b16x64_300e_imagenet_20210616_090925.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin-small_16xb64_in1k.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219-7f9d988b.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_small_224_b16x64_300e_imagenet_20210615_110219.log.json
https://github.com/open-mmlab/mmclassification/blob/master/configs/swin_transformer/swin_base_224_b16x64_300e_imagenet.py
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742-93230b0d.pth
https://download.openmmlab.com/mmclassification/v0/swin-transformer/swin_base_224_b16x64_300e_imagenet_20210616_190742.log.json

CHAPTER

TWENTYFOUR

TOKENS-TO-TOKEN VIT: TRAINING VISION TRANSFORMERS FROM
SCRATCH ON IMAGENET

24.1 Abstract

Transformers, which are popular for language modeling, have been explored for solving vision tasks recently, \eg, the
Vision Transformer (ViT) for image classification. The ViT model splits each image into a sequence of tokens with
fixed length and then applies multiple Transformer layers to model their global relation for classification. However,
ViT achieves inferior performance to CNNs when trained from scratch on a midsize dataset like ImageNet. We find it
is because: 1) the simple tokenization of input images fails to model the important local structure such as edges and
lines among neighboring pixels, leading to low training sample efficiency; 2) the redundant attention backbone design
of ViT leads to limited feature richness for fixed computation budgets and limited training samples. To overcome
such limitations, we propose a new Tokens-To-Token Vision Transformer (T2T-ViT), which incorporates 1) a layer-
wise Tokens-to-Token (T2T) transformation to progressively structurize the image to tokens by recursively aggregating
neighboring Tokens into one Token (Tokens-to-Token), such that local structure represented by surrounding tokens
can be modeled and tokens length can be reduced; 2) an efficient backbone with a deep-narrow structure for vision
transformer motivated by CNN architecture design after empirical study. Notably, T2T-ViT reduces the parameter
count and MACs of vanilla ViT by half, while achieving more than 3.0% improvement when trained from scratch on
ImageNet. It also outperforms ResNets and achieves comparable performance with MobileNets by directly training
on ImageNet. For example, T2T-ViT with comparable size to ResNet50 (21.5M parameters) can achieve 83.3% top1
accuracy in image resolution 384×384 on ImageNet.

24.2 Citation

@article{yuan2021tokens,
title={Tokens-to-token vit: Training vision transformers from scratch on imagenet},
author={Yuan, Li and Chen, Yunpeng and Wang, Tao and Yu, Weihao and Shi, Yujun and Tay,

→˓ Francis EH and Feng, Jiashi and Yan, Shuicheng},
journal={arXiv preprint arXiv:2101.11986},
year={2021}

}

87

MMClassification Documentation, Release 0.18.0

24.3 Pretrain model

The pre-trained modles are converted from official repo.

24.3.1 ImageNet-1k

Models with * are converted from other repos.

24.4 Results and models

Waiting for adding.

88 Chapter 24. Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

https://github.com/yitu-opensource/T2T-ViT/tree/main#2-t2t-vit-models

CHAPTER

TWENTYFIVE

TRANSFORMER IN TRANSFORMER

25.1 Abstract

Transformer is a new kind of neural architecture which encodes the input data as powerful features via the attention
mechanism. Basically, the visual transformers first divide the input images into several local patches and then calculate
both representations and their relationship. Since natural images are of high complexity with abundant detail and color
information, the granularity of the patch dividing is not fine enough for excavating features of objects in different scales
and locations. In this paper, we point out that the attention inside these local patches are also essential for building
visual transformers with high performance and we explore a new architecture, namely, Transformer iN Transformer
(TNT). Specifically, we regard the local patches (e.g., 16×16) as “visual sentences” and present to further divide them
into smaller patches (e.g., 4×4) as “visual words”. The attention of each word will be calculated with other words in the
given visual sentence with negligible computational costs. Features of both words and sentences will be aggregated to
enhance the representation ability. Experiments on several benchmarks demonstrate the effectiveness of the proposed
TNT architecture, e.g., we achieve an 81.5% top-1 accuracy on the ImageNet, which is about 1.7% higher than that of
the state-of-the-art visual transformer with similar computational cost.

25.2 Citation

@misc{han2021transformer,
title={Transformer in Transformer},
author={Kai Han and An Xiao and Enhua Wu and Jianyuan Guo and Chunjing Xu and␣

→˓Yunhe Wang},
year={2021},
eprint={2103.00112},
archivePrefix={arXiv},
primaryClass={cs.CV}

}

25.3 Pretrain model

The pre-trained modles are converted from timm.

89

https://github.com/rwightman/pytorch-image-models/

MMClassification Documentation, Release 0.18.0

25.3.1 ImageNet

Models with * are converted from other repos.

25.4 Results and models

Waiting for adding.

90 Chapter 25. Transformer in Transformer

CHAPTER

TWENTYSIX

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE
IMAGE RECOGNITION

26.1 Abstract

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recog-
nition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture
with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations
can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge
2014 submission, where our team secured the first and the second places in the localisation and classification tracks
respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art
results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the
use of deep visual representations in computer vision.

26.2 Citation

@article{simonyan2014very,
title={Very deep convolutional networks for large-scale image recognition},
author={Simonyan, Karen and Zisserman, Andrew},
journal={arXiv preprint arXiv:1409.1556},
year={2014}

}

26.3 Results and models

26.3.1 ImageNet

91

MMClassification Documentation, Release 0.18.0

92 Chapter 26. Very Deep Convolutional Networks for Large-Scale Image Recognition

CHAPTER

TWENTYSEVEN

AN IMAGE IS WORTH 16X16 WORDS: TRANSFORMERS FOR IMAGE
RECOGNITION AT SCALE

27.1 Abstract

While the Transformer architecture has become the de-facto standard for natural language processing tasks, its ap-
plications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional
networks, or used to replace certain components of convolutional networks while keeping their overall structure in
place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of
image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and
transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vi-
sion Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring
substantially fewer computational resources to train.

27.2 Citation

@inproceedings{
dosovitskiy2021an,
title={An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale},
author={Alexey Dosovitskiy and Lucas Beyer and Alexander Kolesnikov and Dirk␣

→˓Weissenborn and Xiaohua Zhai and Thomas Unterthiner and Mostafa Dehghani and Matthias␣
→˓Minderer and Georg Heigold and Sylvain Gelly and Jakob Uszkoreit and Neil Houlsby},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=YicbFdNTTy}

}

The training step of Vision Transformers is divided into two steps. The first step is training the model on a large dataset,
like ImageNet-21k, and get the pretrain model. And the second step is training the model on the target dataset, like
ImageNet-1k, and get the finetune model. Here, we provide both pretrain models and finetune models.

93

MMClassification Documentation, Release 0.18.0

27.3 Pretrain model

The pre-trained models are converted from model zoo of Google Research.

27.3.1 ImageNet 21k

Models with * are converted from other repos.

27.4 Finetune model

The finetune models are converted from model zoo of Google Research.

27.4.1 ImageNet 1k

Model Pretrain resolu-
tion

Params(M) Flops(G) Top-1
(%)

Top-5
(%)

Con-
fig

Down-
load

ViT-
B16*

ImageNet-
21k

384x384 86.86 33.03 85.43 97.77 config model

ViT-
B32*

ImageNet-
21k

384x384 88.30 8.56 84.01 97.08 config model

ViT-
L16*

ImageNet-
21k

384x384 304.72 116.68 85.63 97.63 config model

Models with * are converted from other repos.

94 Chapter 27. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

https://github.com/google-research/vision_transformer#available-vit-models
https://github.com/google-research/vision_transformer#available-vit-models
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p16_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-98e8652b.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-base-p32_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-base-p32_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-9cea8599.pth
https://github.com/open-mmlab/mmclassification/blob/master/configs/vision_transformer/vit-large-p16_ft-64xb64_in1k-384.py
https://download.openmmlab.com/mmclassification/v0/vit/finetune/vit-large-p16_in21k-pre-3rdparty_ft-64xb64_in1k-384_20210928-b20ba619.pth

CHAPTER

TWENTYEIGHT

PYTORCH TO ONNX (EXPERIMENTAL)

• Pytorch to ONNX (Experimental)

– How to convert models from Pytorch to ONNX

∗ Prerequisite

∗ Usage

∗ Description of all arguments:

– How to evaluate ONNX models with ONNX Runtime

∗ Prerequisite

∗ Usage

∗ Description of all arguments

∗ Results and Models

– List of supported models exportable to ONNX

– Reminders

– FAQs

28.1 How to convert models from Pytorch to ONNX

28.1.1 Prerequisite

1. Please refer to install for installation of MMClassification.

2. Install onnx and onnxruntime

pip install onnx onnxruntime==1.5.1

95

https://mmclassification.readthedocs.io/en/latest/install.html#install-mmclassification

MMClassification Documentation, Release 0.18.0

28.1.2 Usage

python tools/deployment/pytorch2onnx.py \
${CONFIG_FILE} \
--checkpoint ${CHECKPOINT_FILE} \
--output-file ${OUTPUT_FILE} \
--shape ${IMAGE_SHAPE} \
--opset-version ${OPSET_VERSION} \
--dynamic-export \
--show \
--simplify \
--verify \

28.1.3 Description of all arguments:

• config : The path of a model config file.

• --checkpoint : The path of a model checkpoint file.

• --output-file: The path of output ONNX model. If not specified, it will be set to tmp.onnx.

• --shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.

• --opset-version : The opset version of ONNX. If not specified, it will be set to 11.

• --dynamic-export : Determines whether to export ONNX with dynamic input shape and output shapes. If
not specified, it will be set to False.

• --show: Determines whether to print the architecture of the exported model. If not specified, it will be set to
False.

• --simplify: Determines whether to simplify the exported ONNX model. If not specified, it will be set to
False.

• --verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to
False.

Example:

python tools/deployment/pytorch2onnx.py \
configs/resnet/resnet18_8xb16_cifar10.py \
--checkpoint checkpoints/resnet/resnet18_8xb16_cifar10.pth \
--output-file checkpoints/resnet/resnet18_8xb16_cifar10.onnx \
--dynamic-export \
--show \
--simplify \
--verify \

96 Chapter 28. Pytorch to ONNX (Experimental)

MMClassification Documentation, Release 0.18.0

28.2 How to evaluate ONNX models with ONNX Runtime

We prepare a tool tools/deployment/test.py to evaluate ONNX models with ONNXRuntime or TensorRT.

28.2.1 Prerequisite

• Install onnx and onnxruntime-gpu

pip install onnx onnxruntime-gpu

28.2.2 Usage

python tools/deployment/test.py \
${CONFIG_FILE} \
${ONNX_FILE} \
--backend ${BACKEND} \
--out ${OUTPUT_FILE} \
--metrics ${EVALUATION_METRICS} \
--metric-options ${EVALUATION_OPTIONS} \
--show
--show-dir ${SHOW_DIRECTORY} \
--cfg-options ${CFG_OPTIONS} \

28.2.3 Description of all arguments

• config: The path of a model config file.

• model: The path of a ONNX model file.

• --backend: Backend for input model to run and should be onnxruntime or tensorrt.

• --out: The path of output result file in pickle format.

• --metrics: Evaluation metrics, which depends on the dataset, e.g., “accuracy”, “precision”, “recall”,
“f1_score”, “support” for single label dataset, and “mAP”, “CP”, “CR”, “CF1”, “OP”, “OR”, “OF1” for multi-
label dataset.

• --show: Determines whether to show classifier outputs. If not specified, it will be set to False.

• --show-dir: Directory where painted images will be saved

• --metrics-options: Custom options for evaluation, the key-value pair in xxx=yyy format will be kwargs for
dataset.evaluate() function

• --cfg-options: Override some settings in the used config file, the key-value pair in xxx=yyy format will be
merged into config file.

28.2. How to evaluate ONNX models with ONNX Runtime 97

MMClassification Documentation, Release 0.18.0

28.2.4 Results and Models

This part selects ImageNet for onnxruntime verification. ImageNet has multiple versions, but the most commonly used
one is ILSVRC 2012.

28.3 List of supported models exportable to ONNX

The table below lists the models that are guaranteed to be exportable to ONNX and runnable in ONNX Runtime.

Notes:

• All models above are tested with Pytorch==1.6.0

28.4 Reminders

• If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
For models not included in the list, please try to dig a little deeper and debug a little bit more and hopefully solve
them by yourself.

28.5 FAQs

• None

98 Chapter 28. Pytorch to ONNX (Experimental)

http://www.image-net.org/challenges/LSVRC/2012/

CHAPTER

TWENTYNINE

ONNX TO TENSORRT (EXPERIMENTAL)

• ONNX to TensorRT (Experimental)

– How to convert models from ONNX to TensorRT

∗ Prerequisite

∗ Usage

– List of supported models convertible to TensorRT

– Reminders

– FAQs

29.1 How to convert models from ONNX to TensorRT

29.1.1 Prerequisite

1. Please refer to install.md for installation of MMClassification from source.

2. Use our tool pytorch2onnx.md to convert the model from PyTorch to ONNX.

29.1.2 Usage

python tools/deployment/onnx2tensorrt.py \
${MODEL} \
--trt-file ${TRT_FILE} \
--shape ${IMAGE_SHAPE} \
--max-batch-size ${MAX_BATCH_SIZE} \
--workspace-size ${WORKSPACE_SIZE} \
--fp16 \
--show \
--verify \

Description of all arguments:

• model : The path of an ONNX model file.

• --trt-file: The Path of output TensorRT engine file. If not specified, it will be set to tmp.trt.

• --shape: The height and width of model input. If not specified, it will be set to 224 224.

• --max-batch-size: The max batch size of TensorRT model, should not be less than 1.

99

https://mmclassification.readthedocs.io/en/latest/install.html#install-mmclassification

MMClassification Documentation, Release 0.18.0

• --fp16: Enable fp16 mode.

• --workspace-size : The required GPU workspace size in GiB to build TensorRT engine. If not specified, it
will be set to 1 GiB.

• --show: Determines whether to show the outputs of the model. If not specified, it will be set to False.

• --verify: Determines whether to verify the correctness of models between ONNXRuntime and TensorRT. If
not specified, it will be set to False.

Example:

python tools/deployment/onnx2tensorrt.py \
checkpoints/resnet/resnet18_b16x8_cifar10.onnx \
--trt-file checkpoints/resnet/resnet18_b16x8_cifar10.trt \
--shape 224 224 \
--show \
--verify \

29.2 List of supported models convertible to TensorRT

The table below lists the models that are guaranteed to be convertible to TensorRT.

Notes:

• All models above are tested with Pytorch==1.6.0 and TensorRT-7.2.1.6.Ubuntu-16.04.x86_64-gnu.cuda-
10.2.cudnn8.0

29.3 Reminders

• If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
For models not included in the list, we may not provide much help here due to the limited resources. Please try
to dig a little deeper and debug by yourself.

29.4 FAQs

• None

100 Chapter 29. ONNX to TensorRT (Experimental)

CHAPTER

THIRTY

PYTORCH TO TORCHSCRIPT (EXPERIMENTAL)

• Pytorch to TorchScript (Experimental)

– How to convert models from Pytorch to TorchScript

∗ Usage

∗ Description of all arguments

– Reminders

– FAQs

30.1 How to convert models from Pytorch to TorchScript

30.1.1 Usage

python tools/deployment/pytorch2torchscript.py \
${CONFIG_FILE} \
--checkpoint ${CHECKPOINT_FILE} \
--output-file ${OUTPUT_FILE} \
--shape ${IMAGE_SHAPE} \
--verify \

30.1.2 Description of all arguments

• config : The path of a model config file.

• --checkpoint : The path of a model checkpoint file.

• --output-file: The path of output TorchScript model. If not specified, it will be set to tmp.pt.

• --shape: The height and width of input tensor to the model. If not specified, it will be set to 224 224.

• --verify: Determines whether to verify the correctness of an exported model. If not specified, it will be set to
False.

Example:

python tools/deployment/pytorch2onnx.py \
configs/resnet/resnet18_8xb16_cifar10.py \
--checkpoint checkpoints/resnet/resnet18_8xb16_cifar10.pth \

(continues on next page)

101

MMClassification Documentation, Release 0.18.0

(continued from previous page)

--output-file checkpoints/resnet/resnet18_8xb16_cifar10.pt \
--verify \

Notes:

• All models are tested with Pytorch==1.8.1

30.2 Reminders

• For torch.jit.is_tracing() is only supported after v1.6. For users with pytorch v1.3-v1.5, we suggest early returning
tensors manually.

• If you meet any problem with the models in this repo, please create an issue and it would be taken care of soon.

30.3 FAQs

• None

102 Chapter 30. Pytorch to TorchScript (Experimental)

CHAPTER

THIRTYONE

MODEL SERVING

In order to serve an MMClassification model with TorchServe, you can follow the steps:

31.1 1. Convert model from MMClassification to TorchServe

python tools/deployment/mmcls2torchserve.py ${CONFIG_FILE} ${CHECKPOINT_FILE} \
--output-folder ${MODEL_STORE} \
--model-name ${MODEL_NAME}

Note: ${MODEL_STORE} needs to be an absolute path to a folder.

Example:

python tools/deployment/mmcls2torchserve.py \
configs/resnet/resnet18_8xb32_in1k.py \
checkpoints/resnet18_8xb32_in1k_20210831-fbbb1da6.pth \
--output-folder ./checkpoints \
--model-name resnet18_in1k

31.2 2. Build mmcls-serve docker image

docker build -t mmcls-serve:latest docker/serve/

31.3 3. Run mmcls-serve

Check the official docs for running TorchServe with docker.

In order to run in GPU, you need to install nvidia-docker. You can omit the --gpus argument in order to run in GPU.

Example:

docker run --rm \
--cpus 8 \
--gpus device=0 \
-p8080:8080 -p8081:8081 -p8082:8082 \

(continues on next page)

103

https://pytorch.org/serve/
https://github.com/pytorch/serve/blob/master/docker/README.md#running-torchserve-in-a-production-docker-environment
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html

MMClassification Documentation, Release 0.18.0

(continued from previous page)

--mount type=bind,source=`realpath ./checkpoints`,target=/home/model-server/model-store \
mmcls-serve:latest

Note: realpath ./checkpoints points to the absolute path of “./checkpoints”, and you can replace it with the
absolute path where you store torchserve models.

Read the docs about the Inference (8080), Management (8081) and Metrics (8082) APis

31.4 4. Test deployment

curl http://127.0.0.1:8080/predictions/${MODEL_NAME} -T demo/demo.JPEG

You should obtain a response similar to:

{
"pred_label": 58,
"pred_score": 0.38102269172668457,
"pred_class": "water snake"

}

And you can use test_torchserver.py to compare result of TorchServe and PyTorch, and visualize them.

python tools/deployment/test_torchserver.py ${IMAGE_FILE} ${CONFIG_FILE} ${CHECKPOINT_
→˓FILE} ${MODEL_NAME}
[--inference-addr ${INFERENCE_ADDR}] [--device ${DEVICE}]

Example:

python tools/deployment/test_torchserver.py \
demo/demo.JPEG \
configs/resnet/resnet18_8xb32_in1k.py \
checkpoints/resnet18_8xb32_in1k_20210831-fbbb1da6.pth \
resnet18_in1k

104 Chapter 31. Model Serving

https://github.com/pytorch/serve/blob/master/docs/rest_api.md

CHAPTER

THIRTYTWO

VISUALIZATION

• Visualization

– Pipeline Visualization

– Learning Rate Schedule Visualization

– FAQs

32.1 Pipeline Visualization

python tools/visualizations/vis_pipeline.py \
${CONFIG_FILE} \
--output-dir ${OUTPUT_DIR} \
--phase ${DATASET_PHASE} \
--number ${BUNBER_IMAGES_DISPLAY} \
--skip-type ${SKIP_TRANSFORM_TYPE}
--mode ${DISPLAY_MODE} \
--show \
--adaptive \
--min-edge-length ${MIN_EDGE_LENGTH} \
--max-edge-length ${MAX_EDGE_LENGTH} \
--bgr2rgb \
--window-size ${WINDOW_SIZE}

Description of all arguments：

• config : The path of a model config file.

• --output-dir: The output path for visualized images. If not specified, it will be set to '', which means not to
save.

• --phase: Phase of visualizing dataset，must be one of [train, val, test]. If not specified, it will be set
to train.

• --number: The number of samples to visualize. If not specified, display all images in the dataset.

• --skip-type: The pipelines to be skipped. If not specified, it will be set to ['ToTensor', 'Normalize',
'ImageToTensor', 'Collect'].

• --mode: The display mode, can be one of [original, pipeline, concat]. If not specified, it will be set to
concat.

• --show: If set, display pictures in pop-up windows.

• --adaptive: If set, automatically adjust the size of the visualization images.

105

MMClassification Documentation, Release 0.18.0

• --min-edge-length: The minimum edge length, used when --adaptive is set. When any side of the picture
is smaller than ${MIN_EDGE_LENGTH}, the picture will be enlarged while keeping the aspect ratio unchanged,
and the short side will be aligned to ${MIN_EDGE_LENGTH}. If not specified, it will be set to 200.

• --max-edge-length: The maximum edge length, used when --adaptive is set. When any side of the picture
is larger than ${MAX_EDGE_LENGTH}, the picture will be reduced while keeping the aspect ratio unchanged, and
the long side will be aligned to ${MAX_EDGE_LENGTH}. If not specified, it will be set to 1000.

• --bgr2rgb: If set, flip the color channel order of images.

• --window-size: The shape of the display window. If not specified, it will be set to 12*7. If used, it must be in
the format 'W*H'.

Note:

1. If the --mode is not specified, it will be set to concat as default, get the pictures stitched together by original
pictures and transformed pictures; if the --mode is set to original, get the original pictures; if the --mode is
set to pipeline, get the transformed pictures.

2. When --adaptive option is set, images that are too large or too small will be automatically adjusted, you can
use --min-edge-length and --max-edge-length to set the adjust size.

Examples：

1. Visualize all the transformed pictures of the ImageNet training set and display them in pop-up windows：

python ./tools/visualizations/vis_pipeline.py ./configs/resnet/resnet50_8xb32_in1k.py --
→˓show --mode pipeline

2. Visualize 10 comparison pictures in the ImageNet train set and save them in the ./tmp folder：

python ./tools/visualizations/vis_pipeline.py configs/swin_transformer/swin_base_224_
→˓b16x64_300e_imagenet.py --phase train --output-dir tmp --number 10 --adaptive

3. Visualize 100 original pictures in the CIFAR100 validation set, then display and save them in the ./tmp folder：

python ./tools/visualizations/vis_pipeline.py configs/resnet/resnet50_8xb16_cifar100.py -
→˓-phase val --output-dir tmp --mode original --number 100 --show --adaptive --bgr2rgb

32.2 Learning Rate Schedule Visualization

python tools/visualizations/vis_lr.py \
${CONFIG_FILE} \
--dataset-size ${DATASET_SIZE} \
--ngpus ${NUM_GPUs}
--save-path ${SAVE_PATH} \
--title ${TITLE} \
--style ${STYLE} \
--window-size ${WINDOW_SIZE}
--cfg-options

Description of all arguments：

• config : The path of a model config file.

106 Chapter 32. Visualization

MMClassification Documentation, Release 0.18.0

• dataset-size : The size of the datasets. If set，build_dataset will be skipped and ${DATASET_SIZE} will
be used as the size. Default to use the function build_dataset.

• ngpus : The number of GPUs used in training, default to be 1.

• save-path : The learning rate curve plot save path, default not to save.

• title : Title of figure. If not set, default to be config file name.

• style : Style of plt. If not set, default to be whitegrid.

• window-size: The shape of the display window. If not specified, it will be set to 12*7. If used, it must be in
the format 'W*H'.

• cfg-options : Modifications to the configuration file, refer to Tutorial 1: Learn about Configs.

Note: Loading annotations maybe consume much time, you can directly specify the size of the dataset with
dataset-size to save time.

Examples：

python tools/visualizations/vis_lr.py configs/resnet/resnet50_b16x8_cifar100.py

When using ImageNet, directly specify the size of ImageNet, as below:

python tools/visualizations/vis_lr.py configs/repvgg/repvgg-B3g4_4xb64-autoaug-lbs-mixup-
→˓coslr-200e_in1k.py --dataset-size 1281167 --ngpus 4 --save-path ./repvgg-B3g4_4xb64-lr.
→˓jpg

32.3 FAQs

• None

32.3. FAQs 107

https://mmclassification.readthedocs.io/en/latest/tutorials/config.html

MMClassification Documentation, Release 0.18.0

108 Chapter 32. Visualization

CHAPTER

THIRTYTHREE

CONTRIBUTING TO OPENMMLAB

All kinds of contributions are welcome, including but not limited to the following.

• Fixes (typo, bugs)

• New features and components

33.1 Workflow

1. fork and pull the latest OpenMMLab repository (mmclassification)

2. checkout a new branch (do not use master branch for PRs)

3. commit your changes

4. create a PR

Note: If you plan to add some new features that involve large changes, it is encouraged to open an issue for discussion
first.

33.2 Code style

33.2.1 Python

We adopt PEP8 as the preferred code style.

We use the following tools for linting and formatting:

• flake8: A wrapper around some linter tools.

• yapf: A formatter for Python files.

• isort: A Python utility to sort imports.

• markdownlint: A linter to check markdown files and flag style issues.

• docformatter: A formatter to format docstring.

Style configurations of yapf and isort can be found in setup.cfg.

We use pre-commit hook that checks and formats for flake8, yapf, isort, trailing whitespaces, markdown
files, fixes end-of-files, double-quoted-strings, python-encoding-pragma, mixed-line-ending, sorts
requirments.txt automatically on every commit. The config for a pre-commit hook is stored in .pre-commit-config.

After you clone the repository, you will need to install initialize pre-commit hook.

109

https://www.python.org/dev/peps/pep-0008/
http://flake8.pycqa.org/en/latest/
https://github.com/google/yapf
https://github.com/timothycrosley/isort
https://github.com/markdownlint/markdownlint
https://github.com/myint/docformatter
https://github.com/open-mmlab/mmclassification/blob/master/setup.cfg
https://pre-commit.com/
https://github.com/open-mmlab/mmclassification/blob/master/.pre-commit-config.yaml

MMClassification Documentation, Release 0.18.0

pip install -U pre-commit

From the repository folder

pre-commit install

Try the following steps to install ruby when you encounter an issue on installing markdownlint

install rvm
curl -L https://get.rvm.io | bash -s -- --autolibs=read-fail
[[-s "$HOME/.rvm/scripts/rvm"]] && source "$HOME/.rvm/scripts/rvm"
rvm autolibs disable

install ruby
rvm install 2.7.1

Or refer to this repo and take zzruby.sh according its instruction.

After this on every commit check code linters and formatter will be enforced.

Important: Before you create a PR, make sure that your code lints and is formatted by yapf.

33.2.2 C++ and CUDA

We follow the Google C++ Style Guide.

110 Chapter 33. Contributing to OpenMMLab

https://github.com/innerlee/setup
https://github.com/innerlee/setup/blob/master/zzruby.sh
https://google.github.io/styleguide/cppguide.html

CHAPTER

THIRTYFOUR

MMCLS.APIS

111

MMClassification Documentation, Release 0.18.0

112 Chapter 34. mmcls.apis

CHAPTER

THIRTYFIVE

MMCLS.CORE

35.1 evaluation

113

MMClassification Documentation, Release 0.18.0

114 Chapter 35. mmcls.core

CHAPTER

THIRTYSIX

MMCLS.MODELS

36.1 models

36.2 classifiers

36.3 backbones

36.4 necks

36.5 heads

36.6 losses

36.7 utils

115

MMClassification Documentation, Release 0.18.0

116 Chapter 36. mmcls.models

CHAPTER

THIRTYSEVEN

MMCLS.DATASETS

37.1 datasets

37.2 pipelines

117

MMClassification Documentation, Release 0.18.0

118 Chapter 37. mmcls.datasets

CHAPTER

THIRTYEIGHT

MMCLS.UTILS

119

MMClassification Documentation, Release 0.18.0

120 Chapter 38. mmcls.utils

CHAPTER

THIRTYNINE

INDICES AND TABLES

• genindex

• search

121

	Installation
	Requirements
	Install MMClassification
	Release version
	Develop version
	Another option: Docker Image

	Using multiple MMClassification versions

	Getting Started
	Prepare datasets
	Inference with pretrained models
	Inference a single image
	Inference and test a dataset

	Train a model
	Train with a single GPU
	Train with multiple GPUs
	Train with multiple machines
	Launch multiple jobs on a single machine

	Useful tools
	Get the FLOPs and params (experimental)
	Publish a model

	Tutorials

	Tutorial 1: Learn about Configs
	Config File and Checkpoint Naming Convention
	Algorithm information
	Module information
	Training information
	Data information
	Config File Name Example
	Checkpoint Naming Convention

	Config File Structure
	model
	data
	training schedule
	runtime setting

	Inherit and Modify Config File
	Use intermediate variables in configs
	Ignore some fields in the base configs
	Use some fields in the base configs

	Modify config through script arguments
	Import user-defined modules
	FAQ

	Tutorial 2: Fine-tune Models
	Inherit base configs
	Modify model
	Modify dataset
	Modify training schedule
	Start Training

	Tutorial 3: Adding New Dataset
	Customize datasets by reorganizing data
	Reorganize dataset to existing format
	An example of customized dataset

	Customize datasets by mixing dataset
	Repeat dataset
	Class balanced dataset

	Tutorial 4: Custom Data Pipelines
	Design of Data pipelines
	Data loading
	Pre-processing
	Formatting

	Extend and use custom pipelines
	Pipeline visualization

	Tutorial 5: Adding New Modules
	Develop new components
	Add new backbones
	Add new necks
	Add new heads
	Add new loss

	Tutorial 6: Customize Schedule
	Customize optimizer supported by PyTorch
	Customize learning rate schedules
	Learning rate decay
	Warmup strategy

	Customize momentum schedules
	Parameter-wise finely configuration
	Gradient clipping and gradient accumulation
	Gradient clipping
	Gradient accumulation

	Customize self-implemented methods
	Customize self-implemented optimizer
	1. Define a new optimizer
	2. Add the optimizer to registry
	3. Specify the optimizer in the config file

	Customize optimizer constructor

	Tutorial 7: Customize Runtime Settings
	Customize Workflow
	Hooks
	default training hooks
	CheckpointHook
	LoggerHooks
	EvalHook

	Use other implemented hooks

	Customize self-implemented hooks
	1. Implement a new hook
	2. Register the new hook
	3. Modify the config

	FAQ
	1. resume_from and load_from and init_cfg.Pretrained

	Model Zoo Summary
	Model Zoo
	ImageNet
	CIFAR10

	MLP-Mixer: An all-MLP Architecture for Vision
	Abstract
	Citation
	Pretrain model
	ImageNet-1k

	MobileNetV2: Inverted Residuals and Linear Bottlenecks
	Abstract
	Citation
	Results and models
	ImageNet

	Searching for MobileNetV3
	Abstract
	Citation
	Pretrain model
	ImageNet

	Results and models

	Designing Network Design Spaces
	Abstract
	Citation
	Pretrain model
	ImageNet

	Results and models

	Repvgg: Making vgg-style convnets great again
	Abstract
	Citation
	Pretrain model
	Reparameterize RepVGG

	Res2Net: A New Multi-scale Backbone Architecture
	Abstract
	Citation
	Pretrain model
	ImageNet 1k

	Deep Residual Learning for Image Recognition
	Abstract
	Citation
	Results and models
	Cifar10
	Cifar100
	ImageNet

	Aggregated Residual Transformations for Deep Neural Networks
	Abstract
	Citation
	Results and models
	ImageNet

	Squeeze-and-Excitation Networks
	Abstract
	Citation
	Results and models
	ImageNet

	ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
	Abstract
	Citation
	Results and models
	ImageNet

	Shufflenet v2: Practical guidelines for efficient cnn architecture design
	Abstract
	Citation
	Results and models
	ImageNet

	Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
	Abstract
	Citation
	Pretrain model
	ImageNet 1k

	Results and models
	ImageNet 1k

	Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet
	Abstract
	Citation
	Pretrain model
	ImageNet-1k

	Results and models

	Transformer in Transformer
	Abstract
	Citation
	Pretrain model
	ImageNet

	Results and models

	Very Deep Convolutional Networks for Large-Scale Image Recognition
	Abstract
	Citation
	Results and models
	ImageNet

	An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
	Abstract
	Citation
	Pretrain model
	ImageNet 21k

	Finetune model
	ImageNet 1k

	Pytorch to ONNX (Experimental)
	How to convert models from Pytorch to ONNX
	Prerequisite
	Usage
	Description of all arguments:

	How to evaluate ONNX models with ONNX Runtime
	Prerequisite
	Usage
	Description of all arguments
	Results and Models

	List of supported models exportable to ONNX
	Reminders
	FAQs

	ONNX to TensorRT (Experimental)
	How to convert models from ONNX to TensorRT
	Prerequisite
	Usage

	List of supported models convertible to TensorRT
	Reminders
	FAQs

	Pytorch to TorchScript (Experimental)
	How to convert models from Pytorch to TorchScript
	Usage
	Description of all arguments

	Reminders
	FAQs

	Model Serving
	1. Convert model from MMClassification to TorchServe
	2. Build mmcls-serve docker image
	3. Run mmcls-serve
	4. Test deployment

	Visualization
	Pipeline Visualization
	Learning Rate Schedule Visualization
	FAQs

	Contributing to OpenMMLab
	Workflow
	Code style
	Python
	C++ and CUDA

	mmcls.apis
	mmcls.core
	evaluation

	mmcls.models
	models
	classifiers
	backbones
	necks
	heads
	losses
	utils

	mmcls.datasets
	datasets
	pipelines

	mmcls.utils
	Indices and tables

